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Fragmentability and Continuity of Semigroup ActionsMichael G. MegrelishviliCommunicated by Jimmie D. LawsonLet a topologized semigroup S act continuously and linearly on a locally convexspace X: We �nd su�cient conditions for continuity of induced actions on thespaces of linear (compact) operators and on the dual space X�; for instance. Thenotion of fragmentability in the sense of Jayne and Rogers and its natural uniformgeneralizations play a major role in this paper. Our applications show that problemsconcerning the continuity of induced actions have satisfactory solutions for AsplundBanach spaces X (without additional restrictions, if S is a topological group) and,moreover, for a new locally convex version of Asplund spaces introduced in the paper.The starting point of this concept was the characterization of Asplund spaces due toNamioka and Phelps in terms of fragmentability.1. IntroductionLet � : S �X ! X be a continuous linear action of a topologized semigroupS on a linear space X: For every linear space Y , denote by L(X;Y ) and K(X;Y )the linear spaces of all linear and compact operators respectively, endowed with thestrong, that is, the topology of bounded convergence. Consider the induced (right)action: �L : L(X;Y )� S ! L(X;Y ); (fs) (x) = f(sx):(We write sx; fs instead of �(s; x) and �L(f; s) , respectively). The dual action,that is, the case Y := R (the �eld of reals), is denoted by �� : X� � S ! X�: Thesubset of all functionals f 2 X� for which the orbit map ~f : S ! X�; ~f (s) = fs; iscontinuous (at �xed s 2 S ) is denoted by X� (resp.: X�(s)).Frequently, X� may be a proper subset of X� even for the semigroups S := Rand S := [0;1) (see sections 1.3 and 1.5 in [36]). More generally, the spaceof all absolutely continuous measures on a locally compact group G is just theset of all such functionals m 2 (C0(G))� = M(G) for which the orbit mappings~m : G!M(G) are continuous (cf. [40, 41, 11]).We study the following general question:1991 Mathematics Subject Classi�cation. 54H15, 47D03, 46A99, 46B99.Key words and phrases. Asplund space, Radon-Nikodym property, fragmentable set, Namioka'stheorem, dual space, semigroup action, compact operator, left (right) topological semigroup.Typeset by AMS-TEX



2Question 1.1. For which restrictions on the spaces X; on the operators f 2L(X;Y ) and on the elements s 2 S; is the pair (f; s) a point of joint (or separate)continuity for �L? In particular, when do we have X� = X�?For Y := R we refer, among others, to [5, 18, 26, 30] and to the referencesthere. For the important case of one-parameter semigroups see, [36].Recall some positive results.1.2. Let S be a locally compact topological group, and let X be semire
exive.Then �� is continuous [5, 30].1.3. If X is a Banach space such that the dual X� has the Radon-Nikodymproperty (by Stegall's result [45], it is equivalent to saying that X is Asplund),and if S is the one-parameter semigroup [0;1); then �� is continuous at every(f; t); where f 2 X� and t > 0: This is proved by Arendt in [3] and, later, by vanNeerven [35] in a somewhat stronger form.One of the main purposes of the present paper is to provide a uni�ed approachto such results. We generalize 1.2 and 1.3 in several ways:(a) We have found a more general class (NP) of spaces X , called Namioka-Phelps spaces, in which the same conclusions hold;(b) If X is an Asplund Banach space, then �� is continuous for any topologicalgroup S: More generally, if S is a topological subsemigroup of a topologicalgroup G; then �� remains continuous at every (f; t); where f 2 X� andt 2 int(S) � int(S);(c) Analogous results are valid sometimes if X� is replaced by K(X;Y ) (see6.13).In section 3 we investigate a generalized version of fragmentability. This is anattempt to synthesize some known facts and de�nitions from [34, 22, 31, 20, 47,13]. Section 4 is devoted to the class (NP ) of Namioka-Phelps spaces. We saythat a linear topological space X is (NP ) if every equicontinuous subset F of X�is fragmented. More precisely, this means that for every element " of the naturaluniformity on X� and every non-empty subset F1 � F; there exists an w� -opensubset O of X� such that O \ F1 is non-empty and " -small. If X is a Banachspace, then this de�nition gives exactly Asplund spaces. This follows directly fromthe well-known characterization due to Namioka and Phelps [34]. We show that(NP ) contains all Asplund linear spaces in the sense of [4, 44], all semire
exiveand all nuclear spaces. The class (NP ) is closed under taking subspaces, arbitraryproducts and direct sums. Moreover, using the Diestel-Morris-Saxon result [9], itcan be proved that (NP ) contains the variety generated by the class of all AsplundBanach spaces.Section 5 contains some useful \transport arguments." Our main applicationsare concentrated in section 6. In particular, we generalize the above-mentionedresults 1.2 and 1.3. Moreover, some \small-orbit results" are discussed there. Itis a well-known observation that the smallness (separability, for instance) of theorbit of a functional f 2 X� frequently implies that f 2 X�: This happens, forexample, for measures on a locally compact group G: Such a result was obtained�rst in [25] for a second countable G and in its full generality in [46, 11]. Anotherexample in this spirit, when f 2 L1(G) = (L1(G))� , can be found in [39]. Jan vanNeerven [35] proved that for one-parameter semigroups on a Banach space X; theorbit of f 2 X� is (weak) separable i� f 2 X�(t) for every t > 0: We show thatsome results of this kind can be uni�ed in the framework of the general machinerydeveloped in sections 3 and 5.



32. Preliminary resultsThroughout the paper, all spaces are assumed to be Hausdor� and all linearspaces are real. The �lter of all neighborhoods (nbd0s) of a point x is denoted byNx: The identity of a monoid and the origin of a linear space are denoted by e and0, respectively.Let � : P � X ! Y; �(p; x) = px be a function. Then the rules ~x(p) = px =~p(x) de�ne the functions: ~x : P ! Y; ~p : X ! Y: We use the following notation:Conp̀(�) = �x 2 X �� ~x is continuous at p	 ;Con`(�) = \nConp̀(�) �� p 2 Po ;Conrx(�) = �p 2 P �� ~p is continuous at x	 ;Conr(�) = \�Conrx(�) �� x 2 X	 ;Conp(�) = �x 2 X �� � is continuous at (p; x)	 ;Conx(�) = �p 2 P �� � is continuous at (p; x)	 ;Con(�) = �(p; x) 2 P �X �� � is continuous at (p; x)	 :The following useful lemma is well known (see, for example [42, p. 47]).Lemma 2.1. Let Conr(�) = P;X compact and Y a uniform space. Then forevery p0 2 P; the family ~X := f~x : P ! Y �� x 2 Xg is equicontinuous at p0 i�X = Conp0(�):The following de�nition generalizes the notion of uniform equicontinuity and,as we will see below, in some sense is good enough.De�nition 2.2. Let � : P � X ! Y be a function, where P is a topologicalspace, and (X;�) and (Y; �) are uniform spaces. A subset A � X is called � -uniform at p0 2 P if for every entourage " 2 � , there exists (�; U) 2 � � Np0such that for every p 2 U and every (a; b) 2 � \ (A � A) , holds (pa; pb) 2 ": IfA is � -uniform at every p 2 P; then A is called � -uniform. Analogously, subsetsA � X which are � -uniform at p0 2 P can be de�ned for functions � of the formX � P ! Y:In 2.3, 2.4 and 2.5 we will keep the notation of 2.2.Examples 2.3.(a) Let U 2 Np0 and ~U = f~p : X ! Y �� p 2 Ug be uniformly equicontinuous.Then X is � -uniform at p0:(b) Let ~A = f~a : P ! Y �� a 2 Ag be equicontinuous at p0 and the restriction~p0 ��A: A! Y be uniformly continuous. Then A is � -uniform at p0:(c) If X is compact, Conr(�) = P and X = Conp0(�); then X is � -uniformat p0:(d) If � : G�X ! X is an action of a topological group G; and � is a uniformityon X; then X is � -uniform at e i� � is quasibounded in the sense of [27].(e) Let � : G � X ! X be an action of a Baire topological group G on ametric space (X; d): Suppose that each ~g : X ! X(g 2 G) is d -uniformlycontinuous and every ~y : G ! X(y 2 Y ) is continuous for a certain densesubset Y � X: Then X is � -uniform.Proof. (a) is trivial and (b) is straightforward, (c) follows from (b) and Lemma2.1. For (e), use (d) and Theorem 1.10 from [27]. �



4Lemma 2.4. Let A � X be � -uniform at p0 2 P and suppose Conr(�) = P:Then(i) The closure c`(A) is also � -uniform at p0:(ii) If A � c`(A \ Conp̀0(�)); then the restricted map P � c`(A) ! Y iscontinuous at (p0; x) for every x 2 c`(A):(iii) If A = X; then the subset Conp0(�) is closed and coincides with Conp̀0(�):Proof. (i) For a �xed " 2 �; choose "1 2 � such that "31 � ": According toDe�nition 2.2 there exists (�; U) 2 ��Np0 such that:(pa; pb) 2 "1 for every (a; b) 2 � \ (A�A) and every p 2 U:Take �1 2 � with �31 � �: Then (�1; U) is the desired pair satisfying De�nition 2.2for c`(A): Indeed, for an arbitrary but �xed pair (x; y) from �1 \ (c`(A) � c`(A))and a �xed element p 2 U; by the continuity of ~p; we can choose elements a; b 2 Asuch that: (a; x) 2 �1; (y; b) 2 �1; (px; pa) 2 "1; (pb; py) 2 "1:Clearly, (a; b) 2 �31 � �: Then (pa; pb) 2 "1: Finally, observe that (px; py) 2 "31 � ":(ii) By (i) we may assume that c`(A) = A: For a �xed (a0; ") 2 A� � , choose("1; �) 2 � � � and U1 2 Np0 such that "31 � " and (px; py) 2 "1 for every(x; y) 2 � \ (A�A) and p 2 U1: Choose a symmetric �1 2 � such that �21 � � andtake an element a 2 A \ Conp̀0(�) such that (a0; a) 2 �1: For a certain U2 2 Np0 ,(p0a; pa) 2 "1 for every p 2 U2: Then if (a0; x) 2 �1 , x 2 A and p 2 U1 \ U2 , wehave (pa; px) 2 "1 because (a; x) 2 �21 � �: Then (p0a0; px) 2 "31 � ":(iii) Follows easily from (ii). �Corollary 2.5. Let every ~p : X ! Y (p 2 P ) be uniformly continuous. Denoteby X̂ and Ŷ the corresponding completions, and let �̂ : P � X̂ ! Ŷ be the inducedfunction.(i) If X is � -uniform at p0 2 P; then X̂ is �̂ -uniform at p0: If, in addition,X = Conp0(�); then X̂ = Conp0(�̂):(ii) If � is continuous and X is � -uniform , then �̂ is continuous and X̂ is�̂ -uniform.Proof. For (i) apply Lemma 2.4 to �̂: The case (ii) follows from (i). �Proposition 2.6. Let X;Y be topological groups, each endowed with its leftuniformity, and let � : P �X ! Y be a function such that every ~p : X ! Y (p 2 P )is a homomorphism.(i) X is � -uniform at p0 2 P i� (p0; e) 2 Con(�):(ii) If (p0; e) 2 Con(�) and P = Conr(�); then Conp0(�) = Conp̀0(�):(iii) If X = Conp0(�) and P = Conr(�); then X̂ = Conp0(�̂):(iv) If � is continuous, then �̂ is also continuous.Proof. (i) is straightforward. For (ii), use (i) and Lemma 2.4 (iii). In order toestablish (iii), combine (i) with Corollary 2.5 (i). Clearly, (iii) ) (iv). �In general, �̂ is not continuous even for group actions (see [28]).



5Let X be a linear topological space, and let � : P � X ! X be right linear(i.e., each ~p is linear). We say that � is locally bounded at p0 2 P if for everybounded subset B of X there exists U 2 Np0 such that UB := fpx �� p 2 U; x 2 Bgis bounded. The function � is called locally equicontinuous at p0 if there existsU 2 Np0 such that ~U is equicontinuous.Lemma 2.7.(i) If � : P �X ! X is locally equicontinuous at p0; then � is locally boundedat p0:(ii) If � is locally bounded at p0; then �� : X� � P ! X� is continuous at(0; p0) (and therefore X� is �� -uniform at p0 by Proposition 2.6(i)).(iii) If � is continuous and C is a compact subset of P , then ~C is equicontin-uous.Proof. (i) and (ii) are straightforward, and (iii) is a variant of Lemma 2.1. �Proposition 2.8. Let (X; k k) be a normed space, and let � : P �X ! X bea right linear function. Then the following conditions are equivalent:(i) � is continuous at (p0; 0):(ii) � is locally equicontinuous at p0:Proof. (i) ) (ii) Since � is continuous at (p0; 0); there exist U 2 Np0 anda number � > 0 such that the inequality kak � � implies that kpak � 1 foreach p 2 U: Then the norm of ~p is not greater than 1� for every p 2 U: Indeed,observe that 


 �kxk x


 = � for every x 6= 0: By our choice,


p �kxk x


 � 1: Therefore,kpxk � 1� kxk:The implication (ii) ) (i) is trivial. �Let P1; P2 be topological spaces, X1;X2 normed spaces, and �k : Pk �Xk !Xk; k 2 f1; 2g; functions, where ~pk : X ! X is a linear bounded operator for everyk 2 f1; 2g and every pk 2 Pk: Consider the right linear map:�1 
 �2 : (P1 � P2)� (X1 
X2)! X1 
X2;0@ (p1; p2); nXj=1 xj 
 yj1A 7�! nXj=1 p1xj 
 p2yj :The projective and injective tensor norms kmkp; kmki of m 2 X1
X2 are de�nedby the rules:kmkp = inf8<: nXj=1 kxjk � kyjk �� m = nXj=1 xj 
 yj9=; ;kmki = sup8<: nXj=1 f1(xj)f2(yj) �� m = nXj=1 xj 
 yj ; kf1k � 1; kf2k � 1; f1 2 X�1 ; f2 2 X�29=; :The projective and injective tensor products of X1 and X2 are the completionsof X1 
 X2 with respect to the norms k kp and k ki respectively, which we



6denote by X1
̂pX2 and X1
̂iX2: For every (p1; p2) 2 P1 � P2 , the corresponding�1
�2�translation of X1
X2 is bounded with respect to both norms. Therefore,�1 
 �2 can be extended to right linear functions:�1
̂p�2 : (P1 � P2)� �X1
̂pX2� �! X1
̂pX2;�1
̂i�2 : (P1 � P2)� �X1
̂iX2� �! X1
̂iX2:Moreover, we have the following useful result.Proposition 2.9. With the above notation, let �k be continuous at �p0k; xk�for every xk 2 Xk and �xed p0k 2 Pk (k 2 f1; 2g): Then �1
̂p�2 and �1
̂i�2 arecontinuous at �p01; p02;m� for every m 2 X1
̂pX2 or m 2 X1
̂iX2; respectively.Proof. By Proposition 2.8, each p0k has an nbd Uk such that ~Uk is norm-bounded with respect to the norm of Xk (k 2 f1; 2g): The explicit description of thenorms k kp; k ki shows that for the nbd U1�U2 of �p01; p02� ; the family of operatorsÛ1 � U2 will be norm-bounded with respect to both norms. Therefore, �1
̂p�2 ,�1
̂i�2 are continuous at �p01; p02; 0� : By assertions (ii) and (iii) of Proposition 2.6,it su�ces to prove that the orbit mappings ~m : P1�P2 ! X1
̂pX2; ~m : P1�P2 !X1
̂iX2 are continuous at (p01; p02) for every m from the dense subset X1 
 X2:Since kmki � kmkp (see Proposition 7.2.1 in [36]), we have only to examine the\projective case". This can be done easily for elementary tensors x1 
 x2 usingthe well known identity kx1 
 x2kp = kx1k kx2k: Since such tensors span everym 2 X1 
X2; the proof is completed. �3. Fragmentable functions and setsLet (X; � ) be a topological space, and let � be a metric on the set X: FollowingJayne and Rogers [22], we say that X is fragmented by � if for each non-emptysubset A of X and for each " > 0; there exists a � -open subset O of X such thatO \A 6= � and � -diam (O \A) � ":We need the following generalization.De�nition 3.1. Let (X; � ) be a topological space, � a system of subsets inX , and f : X ! Y a �xed (not necessarily continuous) function from X into auniform space (Y; �): We say that � is fragmented by f (with respect to the pair(�; �)) if for every non-empty A 2 � and element " 2 � , there exists a � -opensubset O of X such that O \ A 6= � and f(O \ A) is " -small (i.e., (x; y) 2 " forx; y 2 f(O \ A)). In the special cases � = Nx or � = �; we say that X is locallyfragmented at x or, respectively, locally fragmented. If 2A � �; then we simply saythat A is fragmented.Besides the usual notion of fragmentability, De�nition 3.1 generalizes one moreconcept. Namely, f is cliquish (at x) in the sense of Thielman [47] i� X is locallyfragmented (at x) and � is a metric. Huskable sets [13] are also a particular caseof local fragmentability. It is also a remarkable fact that if a function f : X ! Yis quasi-continuous in the sense of Kempisty [23, 17] (see also modi�ed continuityin [15]), then X is locally fragmented.



7Lemma 3.2. Let � be a system of subsets in X , and let f : (X; � )! (Y; �) bea �xed function from a topological space (X; � ) into a uniform space (Y; �):(a) If the system c`(�) := fc`(A) �� A 2 �g is fragmented by f; then � isfragmented by f .(b) If h : (X1; �1)! (X; � ) is a continuous function, and for a certain A � X1the subset h(A) of X is fragmented by f; then A is fragmented by f � hw.r.t. (�1; �):(c) If every non-empty closed subspace X1 � X is locally fragmented at somepoint by the restricted function f ��X1 w.r.t. �� ��X1 ; ��, then X is frag-mented by f w.r.t. (�; �):(d) If f is locally fragmented, (X; � ) is a Baire space and � = � is a metric,then f is continuous at the points of a dense G� subset D of X:Proof. We omit the easy proof of (a), (b), (c). In order to check (d), for a �xed" > 0 consider the open set O" | the union of all � -open subsets O of X suchthat � -diam (f(O)) � ": Then local fragmentability guarantees that O" is dense.It is easy to see that D := \nO 1n �� n 2 No is the desired dense G� subset. �Note that the assertion (d) was actually known. Its variant has been formulatedwithout proof in [47, Theorem IV]. The present proof, which is very close to theproof of part (i) ) (ii) in Lemma 1.1 of [33] (see also [15, Theorem 1.1]), is givenhere for the sake of completeness.Let a system � of subsets in a topological space X be directed (upwards underthe inclusion), and let (Y; �) be a uniform space. By C�(X;Y ) we will denote theset C(X;Y ) of all continuous maps from X into Y endowed with the uniformity�� of uniform convergence on elements of �: Recall that a standard base of thisuniformity is the system f[A; "] �� A 2 �; " 2 �g; where [A; "] := f('1; '2) ��('1(a); '2(a)) 2 " 8a 2 Ag: The set C(X;Y ) with the pointwise topology will bedenoted by Cp(X;Y ):Lemma 3.3. Let � be a directed system of subsets in a topological space Y suchthat � contains a fundamental subsystem �1 consisting of compact subsets. Let(Z;�) be a uniform space. Suppose that (X; � ) is a �Cech-complete space and thatthe function f : (X; � )! Cp(Y;Z); x 7! 'xis continuous. Then X is fragmented by f w.r.t. (�; ��):Proof. Let � 6= X1 � X;K 2 � and " 2 �: We have to show that there existsa � -open subset O of X such that O \ X1 6= � and f(O \ X1) is [K; "] -small.We may assume that K is compact (by our assumption on �) and X1 is � -closed(Lemma 3.2 (a)). There exist a metric space (M;�) , a uniformly continuous map hof Z onto M and a positive number � such that the inequality �(h(z1); h(z2)) < �implies that (z1; z2) 2 " . Consider the (separately continuous) evaluation map:�X1;K : X1 �K !M ; (x; y) 7! h('x(y)):By Namioka's theorem [32, Theorem 1.2], there exists a dense subset D of X1 suchthat �X1;K is jointly continuous at every (x; y); where x 2 D and y 2 K: Lemma1.1 now yields that the family fh� ~y : X1 ! M �� y 2 Kg is equicontinuous at every



8x 2 D: Choose arbitrarily x0 2 D: Then there exists a � -open nbd O of x0 suchthat�(h(~y(x0)); h(~y(x))) = �(h('x0(y)); h('x(y))) < �2 8x 2 O \X1 8y 2 K:This implies that f(O \X1) is [K; "] -small. �Next, we make some notational conventions. Let X be a linear topologicalspace (`:t:s:) , and let � be its natural uniformity. By �� we denote the uniformityof the strong dual X�: The weak and weak* topologies on X and X� will bedenoted by w and w� respectively. If A is a subset of X (X�); then we say that Ais fragmented if A is fragmented by the inclusion map f = 1A : A ,! X (A ,! X�)with respect to (w;�) (resp.: (w�; ��)). The systems of all bounded subsets of Xand all equicontinuous subsets of X� are denoted by �b and �eq respectively.The �rst assertion of the following lemma easily follows from the de�nitions.Lemma 3.4. (a) Let Y be an ` .t.s. Then L(X;Y ) is a uniform subspace ofC�b (X;Y ):(b) [43, Ch. IV, 1.5, Corollary 4] Every locally convex space (` .c.s.) X is auniform subspace of C�eq (X�;R):The following result is well known for Banach spaces [33, Theorem 1.2].Proposition 3.5. Every relatively weakly compact subset A of an ` .c.s. X isfragmented.Proof. By [43, Ch. III, 4.3], the system �eq has a fundamental subsystemconsisting of weak� -compact subsets. Therefore we can apply Lemma 3.3 to thew -continuous inclusion c`w(A) ,! Cp(X�;R): Then c`w(A) (and, hence, its subsetA) is fragmented. �Proposition 3.6. If X is semire
exive, then every relatively weak� -compact(and, hence, every equicontinuous) subset A of X� is fragmented.Proof. The semire
exivity of X means that each bounded subset of X isrelatively weakly compact. Taking into consideration that every weakly compactsubset of X is weakly bounded and, hence, bounded, we can apply Lemma 3.3to the weak� -continuous inclusion map c`w�(A) ,! Cp(X;R) and the system �b:�De�nition 3.7. Let (X;�) be a uniform space, and let " 2 �: We say that X is" -Lindel�of if the uniform cover f"(x) �� x 2 Xg; where "(x) = fy 2 X �� (x; y) 2 "g ,has a countable subcover. If X is " -Lindel�of for each " 2 �; then it will be calleduniformly Lindel�of.We mention that (X;�) is uniformly Lindel�of i� it is @0 -precompact in thesense of Isbell [20] i� X is @0 -bounded in the sense of Guran (cf. De�nition2.4 in [48]). We prefer the name \uniformly Lindel�of" in order to avoid possiblemisunderstandings in linear spaces. If X , as a topological space, is either separable,Lindel�of or ccc (see [20, p.24]), then (X;�) is uniformly Lindel�of. For a metrizableuniformity �; (X;�) is uniformly Lindel�of i� X is separable. Uniformly continuousmaps move uniformly Lindel�of subspaces onto uniformly Lindel�of subspaces. Guranshowed [16] that a topological group G endowed with its left or right uniformity isuniformly Lindel�of i� G is a topological subgroup in a product of second countablegroups. As is well known, every ` .c.s. X is a linear topological subspace in aproduct of normed spaces. Combining these facts we obtain



9Proposition 3.8. An ` .c.s. X is uniformly Lindel�of i� X is a linear topologicalsubspace in a product of separable normed spaces.De�nition 3.9. Let f : X ! Y be a map from a topological space X into auniform space (Y; �): We say that f is locally uniformly Lindel�of at a point x 2 X;if for every " 2 � there exists U 2 Nx such that f(U) is " -Lindel�of (this holds,for example, if f(U0) is uniformly Lindel�of for a certain U0 2 Nx):This de�nition is closely related to a concept from [31] called the index ofnon-separability. If � is a metric, then the condition in De�nition 3.9 can bereformulated by saying that for every " > 0 there exists U 2 Nx such that theindex of non-separability �(U) is less than ": Hence, this gives a single-valuedvariant of the \� upper semi-continuity" [31, p. 70].Proposition 3.10. Let � be a directed system of subsets in a topological spaceY , and let (Z;�) be a uniform space. Suppose that (X; � ) is Baire and the functionf : X ! Cp(Y;Z); x 7! 'x is continuous.(i) If f : X ! C�(Y;Z) is locally uniformly Lindel�of at x0 2 X; then X islocally fragmented by f at x0 w.r.t. (�; ��):(ii) If X is hereditarily Baire (i.e., each closed subset is Baire) and f : X !C�(Y;Z) is locally uniformly Lindel�of at each point, then X is fragmentedby f w.r.t. (�; ��):Proof. (i). Let W be an open nbd of x0; A 2 � and " 2 �: Our aim is to�nd an open subset O of W such that f(O) is [A; "] -small. Choose symmetric� 2 � such that �2 � ": We can suppose that � is a closed subset of Z � Z: Sincef is locally uniformly Lindel�of at x0; there exists an open nbd U of x0 such thatU � W and f(U) is [A; �] -uniformly Lindel�of. Thus, there exists a sequence (xn)in U such that f(U) � [�[A; �] (fxn) �� n 2 N	 ;where [A; �] (fxn) = �' 2 C(Y;Z) �� (fxn(y); ' (y)) 2 � 8y 2 A	 :Then U = [fMn �� n 2 Ng for Mn := fx 2 U �� (fxn(y); fx(y)) 2 � 8y 2 Ag:Since � is closed and f is (�; p)-continuous, one can easily see that each Mn isclosed in U: By the Baire category theorem, a certain Mn0 contains a non-empty� -open subset O: Then, �fxn0 ; fx� 2 [A; �] for every x 2 O: This implies thatf(O) is [A; "] -small, because �2 � ":For (ii), use (i) and Lemma 3.2 (c). �Corollary 3.11. Let Y be an ` .t.s. (or an ` .c.s.), and let X be a uniformlyLindel�of subset of Y � (resp.: Y ). If X is hereditarily Baire in the weak� (resp.:weak) topology, then X is fragmented.Proof. Apply Proposition 3.10(ii) to the inclusion (X;w�) ,! Cp(Y;R) and thesystem � = �b (resp.: (X;w) ,! Cp((Y �;R) and � = �eq ). �



10Corollary 3.12. Let X be a Baire topological space.(i) Suppose that (Y; � ) is an ` .c.s and that f : X ! Y is weakly continuous.If f(X) is second countable w.r.t. �; then f is � -continuous at each pointof a dense G� subset of X:(ii) Suppose that (Y; � ) is an ` .t.s., (Y �; ��) denotes its dual, and f : X ! Y �is weak� -continuous. If f(X) is second countable w.r.t. ��; then f is�� -continuous at each point of a dense G� subset of X:Proof. Use Proposition 3.10 (i) and Lemmas 3.4, 3.2. �Remark 3.13. If, in the assertion (i) of Corollary 3.12, the space Y is assumedto be normed, then we obtain a result of Alexiewicz and Orlicz [1].Recall that a real-valued function f de�ned on an open convex subset U ofa linear topological space X is called Fr�echet di�erentiable at x0 2 U wheneverthere exists u 2 X� such that for every bounded B � X and every " > 0, thereexists � > 0 such that for all x 2 B and for all t with the property 0 < jtj < �;the following inequality is satis�ed:����f(x0 + tx)� f(x0)t � u(x)���� < ":The function u is denoted by f 0(x0): In the de�nition, � can be chosen so smallthat for every t 2 (0; �) and every x 2 B , holds(D) f(x0 + tx) + f(x0 � tx)� 2f(x0) < t"3 :A weak� slice of a nonempty subset A � X� is a subset of A of the form:S(x0; A; �) = �f 2 A �� f(x0) > �A(x0)� �	 ;where x0 2 X;� > 0 and �A(x) := sup ff(x) �� f 2 Ag:Proposition 3.14. Let X be a linear topological space, and let F be anequicontinuous subset of X�: Suppose that for every non-empty relatively w� -closed subspace A of F , the sublinear functional �A : X ! R; de�ned by the rule�A(x) = sup ff(x) �� f 2 Ag , is Fr�echet di�erentiable at some point (depending onA) x of X: Then F is fragmented.Proof. Fix " > 0 and a bounded set B � X: We have to show that for everynon-empty subset A of F , there exists a relatively w� -open non-empty subset Owhich is [B; "] -small. It su�ces to �nd a [B; "] -small weak� slice of A: By Lemma3.2 (a), we may suppose that A is relatively w� -closed in F . Consider the function�A: It is continuous because A is equicontinuous. Suppose that every weak� sliceof A is not [B; "] -small. As in the proof of Lemma 2.18 in [38], we will showthat �A is nowhere Fr�echet di�erentiable. Let x 2 X: By our assumption, foreach n � 1 the weak� slice S �x;A; "3n� is not [B; "] -small. Therefore, there existfn; hn 2 S �x;A; "3n� and xn 2 B which satisfyjfn(xn)� hn (xn)j > ":



11On the other hand, by the de�nition of slice we have:fn(x) > �A(x)� "3n ; hn(x) > �A(x)� "3n:Then �A �x+ xnn �+ �A �x� xnn �� 2�A(x) �� fn �x+ xnn � + hn �x� xnn � � (fn + hn) (x)� 2"3n == 1n (fn � hn) (xn) � 2"3n > "n � 2"3n = 1n � "3 :This contradicts the inequality (D). �4. Namioka-Phelps spacesRecall [4, 44] that a linear topological space X is said to be Asplund if everycontinuous convex real function de�ned on an open convex subset of X is Fr�echetdi�erentiable on a dense G� subset of its domain. If, in the de�nition, \dense G� "is replaced by \dense", X is called a Fr�echet di�erentiable space.For Banach spaces, these de�nitions give the same classes. General Asplundspaces are studied systematically in [44, 14]. For information on Asplund Banachspaces, see for example [34, 45, 6, 38]. Among various characterizations of AsplundBanach spaces, we mention here only two. The �rst one states that a Banach spaceX is Asplund i� X� has the Radon-Nikodym property [45]. In 1975 Namioka andPhelps [34] proved that a Banach space X is Asplund i� every bounded subset ofX� is fragmented. The last criteria justi�es the following main de�nition.De�nition 4.1. We say that an ` .t.s. X is Namioka-Phelps (abbr.: (NP)) ifevery equicontinuous subset of X� is fragmented.Recall that if X is a normed space then a subset F of X� is equicontinuousif and only if F is bounded.Proposition 4.2. Every Fr�echet di�erentiable (and, hence, every Asplund)space is (NP).Proof. Directly follows from Proposition 3.14. �Proposition 4.3. Every semire
exive space is (NP).Proof. Directly follows from Proposition 3.6. �An ` .c.s. X is called semi-Montel [37] if every bounded subset of X isrelatively compact. We say that an ` .c.s. X is quasi-Montel if every boundedsubset of X is precompact. By [43, ch. III, x7, Corollary 2], every nuclear space isquasi-Montel.Proposition 4.4. Let X be a quasi-Montel space, and let Y be a lineartopological space. Then for every equicontinuous subset F of L(X;Y ) , the topologyof pointwise convergence and the strong topology coincide on F:Proof. The strong topology is the topology of bounded convergence. By ourassumption, every bounded subset of X is precompact. Now our assertion followsfrom the fact that the topologies of precompact and simple convergence coincideon F (see [43, III, 4.5]). �



12Corollary 4.5. Every quasi-Montel space is (NP).Proposition 4.6. Let X be a linear topological space. If X� (or, at least, eachequicontinuous subset of X� ) is uniformly Lindel�of, then X is (NP).Proof. By [43, III, 4.3], every equicontinuous subset F of X� is contained in aweak� -compact equicontinuous subset c`w�(F ); which is fragmented by Corollary3.11. �Remark 4.7. (a) The last result generalizes the well-known fact in the theory ofAsplund spaces, which states that each Banach space X with the separable dualX� is Asplund.(b) Corollary 4.5 can also be derived from Proposition 4.6 because, as followseasily from [43, III, 4.3], each equicontinuous subset of X� is relatively compact inthe strong topology whenever X is quasi-Montel.The following result is a minor modi�cation of Lemma 2.1 from [33].Lemma 4.8. Let (X; �X ) and (Y; �Y ) be compact (Hausdor�) spaces, and let�X and �Y be uniformities on the sets X and Y respectively. Suppose that thereis a continuous surjection f : X ! Y which is also uniformly continuous w.r.t. �Xand �Y : If X is fragmented by the identity map 1X : X ! X w.r.t. (�X ; �X) ,then Y is fragmented by the identity map 1Y : Y ! Y w.r.t. (�Y ; �Y ):Proof. Let A be a non-empty �Y -compact subset of Y; and let " 2 �Y : Choose� 2 �X such that (f � f) (�) � ": By Zorn's Lemma, there exists a minimal �X -compact subset M of X such that f(M) = A: Since X is fragmented, there existsV 2 �X such that V \M 6= � and V \M is � -small. Then the set f(V \M) is" -small. Consider the set W = A n f(M n (V \M)): Then(a) W is " -small, being a subset of f(V \M) ;(b) W is relatively �Y -open in A ;(c) W is non-empty (otherwise M n (V \M) is a proper �X -compact subsetof M such that f(M n (V \M)) = A).Therefore, by Lemma 3.2 (a), the proof is complete. �Proposition 4.9. If E is (NP) and M is a linear subspace of E; then M is(NP).Proof. Let Y be an equicontinuous subset of M�: By [37, 9.11.4 (a)] thereexists an equicontinuous (and, hence, fragmented) subset X of E� such that forthe canonical mapping q� : E� ! M� (where q : M ,! E is the inclusion), holdsq�(X) = Y: By the Alaoglu-Bourbaki theorem and Lemma 3.2 (a), we may assumethat X and Y are weak� -compact. The fragmentability of Y follows from Lemma4.8, applied to the map q� ��X : X ! Y , which is weak� -weak� continuous and alsouniformly continuous when X and Y carry the uniformities �X and �Y inheritedfrom the strong uniformities. �A linear map q : X ! Y is said to be bound covering if for every boundedsubset A of Y , there exists a bounded subset B of X such that q(B) = A: Alinear open map of a normed space onto a normed space is a bound covering. Formore information see [8].



13Proposition 4.10. Let q : X ! Y be a continuous bound covering linear map.If X is (NP), then Y is (NP).Proof. Let F � Y � be equicontinuous. In order to establish the fragmentabilityof F; �x: a non-empty subset F1 of F; a bounded subset A of Y; and a number" > 0: Since q is bound covering, there exists a bounded subset B of X such thatq(B) = A: The set F1q = ff � q 2 X� �� f 2 F1gis an equicontinuous subset of X� and, hence, it is fragmented because X is (NP).Therefore, for [B; "] there exist a �nite sequence fx1; x2; : : : ; xng in X; a number� > 0 and a functional h0 2 F1q such that for every h 2 F1q satisfying thecondition jh0(xi)� h(xi)j < � 8 i 2 f1; 2; : : : ; ng;we have jh0(x)� h(x)j < " for every x 2 B:Clearly, h0 = f0 � q for a certain f0 2 F1: Thenjf0(y) � f(y)j < " for every y 2 A;whenever jf0(yi) � f(yi)j < � 8 i 2 f1; 2; : : : ; ng;where f 2 F1 and yi denotes q(xi): This proves our assertion. �Example 4.11. The class (NP) is not closed under quotients. In particular,Proposition 4.10 may be false if q is not bound covering. Indeed, there is [43, IV,Ex. 20] a Fr�echet Montel (and, hence, (NP)) space E in which there exists a closedsubspace M such that E=M is isomorphic with the Banach space `1 which is notAsplund (or, equivalently, is not (NP)) by [34, Corollary 10]. This example alsoshows that the class of all ` .c. (NP)-spaces is not a variety in the sense of [9].However, we have:Proposition 4.12. The class (NP) is closed under products and l.c. directsums.Proof. Let X = Qi2IXi be a topological product of (NP) spaces. Suppose Fis an equicontinuous subset of X�: Fix: a nonempty subset F1 � F; a boundedsubset B of X; and a number " > 0: Since F1 is equicontinuous, the polarF 01 = fx 2 X �� jf(x)j � 1 8 f 2 F1gis a neighborhood of 0 in X: Therefore, for a certain �nite J � I; the projectionpri �F 01 � is Xi for i 62 J: This implies that for every functional f = Pi2I fi from F1;the functional fi 2 X�i is trivial for each i 62 J: In fact, f can be represented asf = Pj2J fj :Every projection prj(B) is a bounded subset of Xj(j 2 J): Since prj(F ) isan equicontinuous subset of X�j and Xj is (NP), for every j 2 J there exist:(a) a functional hj 2 X�j ;(b) A �nite set fxj1; xj2; : : : ; xjnjg � Xj ;(c) a number �j > 0



14such that if ���fj �xjk�� hj �xjk���� < �j 8 k 2 f1; 2; : : : ; njg;then jfj(y) � hj(y)j < "jJ j 8 y 2 prj(B):Now, consider:(1) the �nite set n~xjk �� j 2 J; k 2 f1; 2; : : : ; njgo � X; where ~xjk denotes theelement of Qi2IXi having xjk in the j -th coordinate and all other coordinatesare zero;(2) the number � := minf�j �� j 2 Jg;(3) the functional h0 := Pj2J hj 2 X�:We claim that for every f = Pj2J fj 2 F1 , the �nite system of inequalities:���f �~xjk�� h0 �~xjk���� � � 8 j 2 J; 8 k 2 f1; 2; : : : ; njgimply that jf(y) � h0(y)j � " 8 y 2 B:Indeed, ���f �~xjk�� h0 �~xjk���� = ���fj �xjk� � hj �xjk���� � � � �j :Then for every y = (yi)i2I 2 B , holds:jf(y) � h0(y)j = ������Xj2J �fj(yj)� hj(yj)������� �X��fj(yj) � hj(yj)�� � jJ j � "jJ j = ":This proves our assertion for products.For direct sums, the proof is quite similar. The following standard fact from[43, II, 6.3] plays the major role in the proof.Fact. For every bounded subset B of a locally convex direct sum �i2IXi; thereexists a �nite set J � I such that pri(B) is zero for every i 62 J:�Proposition 4.13. The class (NP) contains the variety generated by theAsplund Banach spaces. In particular, every quotient of a subspace M of Qi2IXi;where each Xi is an Asplund Banach space, belongs to (NP).Proof. An easy consequence of [9, Theorem 1.4] and the results of this section.�



15Remark 4.14. (a) By Proposition 4.13, the (NP)-space E from Example 4.11is not contained in a product of Asplund Banach spaces.(b) The class (ASP) of Asplund spaces is a proper subclass of (NP). Indeed,(ASP) is not closed under locally convex direct sums [43, Example 6.1], in contrastto (NP).(c) Recall that if the dual E� of a Banach space is weakly compactly generated(in the sense of [2]), then E is Asplund (cf. [34]). Is it true that an l.c.s. E is (NP)if E� is weakly compactly generated (cf. [19]) ?5. A \transport" argumentDe�nition 5.1. Let S be a topologized semigroup, and let P;Q be subsets ofS: We say that an element t 2 S is left (right) P -reachable from Q if for every non-empty open subset O � Q there exists p 2 P such that pO 2 Nt (resp.: Op 2 Nt ).We write s C` t or s Cr t if there exists a non-empty compact subset Cs;t of Ssuch that for every nbd P of Cs;t there exists an nbd Q of s such that t is leftor, respectively, right P -reachable from Q: One gets the weaker relations writing:s Cẁ t or s Crw t , whenever there exists Q 2 Ns such that t is left or, respectively,right S -reachable from Q: Denote by SC` �SCr ; SCẁ ; SCrw� the set of all t 2 Ssuch that for a certain s 2 S , holds s C` t (resp.: s Cr t; s Cẁ t; s Crw t).Lemma 5.2. Let S be a topological subsemigroup of a topological group G: Thenint(S) � int(S) � SC` \SCr : More precisely, if t = s1s2; where s1; s2 2 int(S); thens2 C` t with Cs2;t = fs1g and s1 Cr t with Cs1;t = fs2g:Proof. For every nbd P of s1 in S , choose an nbd U of e in G so small thats1U � P and U�1s2 � int(S): Consider nbd Q := U�1s2 of s2: Then t is leftP -reachable from Q because for every non-empty open subset O of Q , we can takeu 2 U such that u�1s2 2 O: Then for p := s1u , holds t = (s1u) (u�1s2) 2 pO andpO is open in S: This proves s2 C` t with Cs2;t = fs1g: Easy modi�cations provethe second case. �Corollary 5.3. (a) If G is a topological group, then GC` = GCr = G:(b) [0;1)C` = [0;1)Cr = (0;1):A topologized semigroup S is called left (right) topological if, for the multipli-cation � : S � S ! S , we have Con`(�) = S (resp.: Conr(�) = S ).Lemma 5.4. Let S be a left (right) topological monoid, and let H(e) denote thegroup of all units in S: If sH(e) (resp.: H(e)s) is dense in S; then s 2 SCrw(resp.: s 2 SCẁ ).Proof. It is trivial to show that e Crw s (resp.: e Cẁ s) . �Lemma 5.5. (a) Let � : S �X ! X be a semigroup action on a uniform space(X;�): Assume that x0 2 X; s; t 2 S and the following conditions are satis�ed:(1) s C` t ;(2) X is � -uniform at every c 2 Cs;t;(3) S is locally fragmented at s by the orbit map ~x0 : S ! (X;�):Then ~x0 is continuous at t.



16(b) The same is true for a right action � : X�S ! X provided that \s Cr t" takesthe place of (1).(c) If ~S is �-uniformly equicontinuous, then in (a) and (b), condition (2) can bedropped, and (1) can be replaced by the weaker assumptions: s Cẁ t and s Crw trespectively.Proof. We prove only (a). Case (b) is similar, and (c) can be obtained by aminor modi�cation of (a).Let " 2 �: Since Cs;t is compact, by elementary compactness arguments,making use (2), we can pick nbd P of Cs;t such that:(*) There exists � 2 � such that (px; py) 2 " for every (x; y) 2 � and p 2 P:According to De�nition 5.1, choose for P nbd Q of s such that t is P -reachable from Q: By (3) there exists an open non-empty subset O of Q such thatthe set ~x0(O) = Ox0 is � -small. By our choice, for a certain p 2 P , holds pO 2 Nt:Then the set ~x0(pO) = pOx0 is " -small by (�) . This proves the continuity of ~x0at t: �Several transport arguments and their applications can be found in [26, 42].6. ApplicationsLemma 6.1. (i) Let X be an `: t.s., P be a topological space and � : P �X ! Xa right linear map satisfying Conr(�) = P: For a normed space Z , consider theinduced map �L : L(X;Z) � P ! L(X;Z): If (p0; 0) 2 Con(�); then for everyequicontinuous subset F of L(X;Z) , there exists U 2 Np0 such that FU isequicontinuous in L(X;Z):(ii) If we replace the assumption (p0; 0) 2 Con(�) with the assumption that ~Qis equicontinuous for a certain Q 2 Np0 ; then Z may be an arbitrary ` .t.s.Proof. (i) Since Z is normed, the system � 1n B �� n 2 N	 ; where B is the unitball in Z; is a local base at 0: As in the case Z := R; it is easy to show that asubset E of L(X;Z) is equicontinuous i� E � W 0; where W is a certain nbd of0 in X , and W 0 denotes the \polar" of W; i.e., the set:W 0 = ff 2 L(X;Z) �� kf(x)k � 1 8x 2Wg:Since F is equicontinuous in L(X;Z); there exists an nbd V of 0 such thatF � V 0: The continuity of � at (p0; 0) implies that UW � V for certain nbd 'sU 2 Np0 ; W 2 N0: Then, eventually, FU �W 0:The proof of (ii) is analogous and even easier and, hence, is omitted. �Now we are ready to prove the following main lemma.Lemma 6.2. Let X be (NP), and let � : S � X ! X be a continuous linearaction. Denote by �� the dual action X� � S ! X�: If s Cr t (s Crw t) and� is locally bounded at every q 2 Cs;t [ ftg (resp.: ~S is equicontinuous), thenX� = Cont(��):Proof. We prove only the \locally bounded" case. The second case is an easymodi�cation.Fix f 2 X�: In order to establish that �� is continuous at (f; t); by Lemma2.7(ii) and the `right' version of Proposition 2.6(ii), it su�ces to show that ~f : S !



17X�; s 7! fs is continuous at t: By our hypothesis, condition (1) in Lemma 5.5(b) issatis�ed. Let c 2 Cs;t: Since � is locally bounded at c; �� is continuous at (0; c)(Lemma 2.7(ii)). By the `right' version of Proposition 2.6(i), X� is �� -uniform atc: Therefore, condition (2) also holds. In order to check the validity of (3), take, dueto Lemma 6.1, nbd U 2 Ns such that fU is an equicontinuous subset of X�: SinceX is (NP), fU is fragmented. On the other hand, the continuity of � guaranteesthat ~f : S ! X� is weak� -continuous. Therefore, Lemma 3.2(b) establishes thatU is fragmented by ~f : S ! (X�; ��): Hence, S is locally fragmented at s by ~f:Now we can use Lemma 5.5(b) which yields that ~f is continuous at t: �The following applications are divided into several subsections.A. Locally compact (semi) group actions.Theorem 6.3. Let X be (NP), let S be a topological subsemigroup of alocally compact topological group G; and let � : S �X ! X be a continuous linearaction. Then �� : X� � S ! X� is continuous at every (f; t) , where f 2 X� andt 2 int(S) � int(S): In particular, if S = G , then �� is continuous.Proof. Let f 2 X� and t = s1s2; where s1; s2 2 int(S): By Lemma 5.2,s1 Cr t with Cs1;t = fs2g: The points s2 and t; being in int(S); have locallycompact nbd 's in S: Therefore, by Lemma 2.7, � is locally equicontinuous (and,hence, locally bounded) at each q 2 fs2; tg: Now, we can apply Lemma 6.2 . �Corollary 6.4. (Moore [30, Ch. 5, Theorem 5], Bourbaki [5, Ch. 8, x2, Ex.3(c)]) For every locally compact topological group G and every continuous linearaction on a semire
exive space X; the dual action is continuous.Proof. By Proposition 4.3, X is (NP). �Corollary 6.5. (Generalized Arendt Theorem.) Let X be (NP). For everycontinuous linear one-parameter semigroup action � : [0;1) � X ! X; the dualaction �� : X� � [0;1) ! X� is continuous at every (f; t); where f 2 X� andt > 0:Remark 6.6.(a) Helmer has shown [18, Corollary 4.3], that if S is a locally compact topolog-ical monoid, then for every continuous linear action of S on a semire
exivespace X , the dual action is continuous at every (f; t) , where f 2 X� andt is a unit.(b) Arendt [3] proved Corollary 6.5 for Banach spaces X whose duals havethe Radon-Nikodym Property. By [45], such X are Asplund. Therefore,Corollary 6.5 is stronger. A \non-adjoint" generalization of Arendt's resultwas obtained by van Neerven [35, Lemma 3.1].(c) It is actually well known that some restrictions on points t 2 S are reallyneeded. For example, if S = [0;1) and X is a (non-re
exive) AsplundBanach space, then \t > 0" is essential even for X = c0; or for X = Y �where Y is the (quasi-re
exive) James space (cf. [36, Examples 2.3.5,1.5.3]).(d) Generally, the local boundedness in Lemma 6.2, as well as the local com-pactness in Theorem 6.3 and Corollary 6.4, cannot be dropped even for aBaire topological group G and a re
exive ` .c.s. X: Indeed, if G = R@0+ is the



18 @0 -power of the multiplicative group of all positive real numbers, X = R@0and � : G � X ! X is de�ned coordinatewise, then it is easy to see that�� is not continuous at any (0; g); where g 2 G:Theorem 6.7. Let X be (NP) and let S be a compact left topological monoidsuch that the group of all units H(e) is dense in S: For every linear continuousaction � : S � X ! X; the dual action �� is continuous at every (f; t); wheref 2 X� and t 2 H(e):Proof. Apply Lemma 6.2, taking into account Lemmas 2.7(iii) and 5.4. �B. Actions on normed spaces.Theorem 6.8. Let X be a normed space whose dual X� has the Radon-Nikodymproperty, and let S be an arbitrary topologized semigroup. For every continuouslinear action � : S � X ! X , the dual action �� is continuous at every (f; t);where f 2 X� and t 2 SCr (or even t 2 SCrw , if the action is contracting).Proof. By Proposition 2.6(iv), we may assume that X is Banach. Above-mentioned characterization from [45] implies that X is Asplund. By Proposition4.2, X is (NP). By Proposition 2.8, � is locally equicontinuous and, hence, locallybounded by Lemma 2.7(i). Finally, use Lemma 6.2. �Corollary 6.9. For an arbitrary topological group G and any continuous linearaction of G on an Asplund Banach space, the dual action is also continuous.Remark 6.10. (a) For G = R; see van Neerven [36, Corollary 6.2.6].(b) Christensen and Kenderov proved in [7] that every weak� -continuous map-ping F from a Baire space S into X�; where X is Banach and X� has the Radon-Nikodym property, is norm-continuous at any point of a certain dense G� subsetof S . This result, together with Propositions 2.8, 2.6, Lemma 2.7 and easy trans-port arguments, provide an alternative proof of Corollary 6.9 in the case of a Bairetopological group G:Let Is(X) be the group of all linear isometries of a normed space X: Denoteby p (and p� ) the group topology on Is(X) generated by the system of all orbitmappings f~x : Is(X)! X; ~x(g) = gx �� x 2 Xg�respectively : f ~f : Is(X)! X�; ~f(g) = fg �� f 2 X�g� :Theorem 6.8 implies that if X� has the Radon-Nikodym property, then the dualaction of (Is(X); p) on X� is continuous. Therefore, p� � p: This yields:Corollary 6.11. If X is a re
exive Banach space, then the topologies p andp� on Is(X) coincide.C. Construction of minimal topological groups.Recall that a topological group G is said to be minimal [10] if it does notadmit a strictly coarser Hausdor� group topology. If X � G is minimal for everyminimal group X; then G is called perfectly minimal [10]. The following theoremprovides additional information to the results of [29].



19Theorem 6.12. Let X be an Asplund Banach space. Then every topologicalsubgroup of (Is(X); p) is a topological group retract of a perfectly minimal topologicalgroup.Proof. By Corollary 6.9, the dual action of (Is(X); p) on X� is continuous.Therefore, G is an HBR-group in the sense of [29, De�nitions 4.2, 4.7]. Now ourassertion follows directly from Theorem 4.8 of [29]. �D. Actions on compact operators.Let X and Y be Banach spaces. If X� or Y has the approximation property,then the injective tensor product X�
̂iY is naturally isomorphic to K(X;Y ) [24,p. 268].Theorem 6.13. Let X and Y be Banach spaces. Suppose that X is Asplundand that either X� or Y has the approximation property. Then for every continu-ous linear action � : S �X ! X , the induced action �L : L(X;Y )� S ! L(X;Y )is continuous at every (f; t); where f is a compact operator and t 2 SCr : In par-ticular, the induced action �K : K(X;Y )�G! K(X;Y ) is jointly continuous forarbitrary topological group S = G:Proof. By Proposition 2.8, � is locally equicontinuous. Then the same is truefor the right action �L: Since \equicontinuous" implies \uniformly equicontinuous"in linear spaces, Example 2.3(a) shows that L(X;Y ) is �L -uniform. Fix (f; t) 2K(X;Y ) � SCr : By Lemma 2.4(iii), it su�ces to show that ~f : S ! L(X;Y )is continuous at t: Since f is compact, ~f (S) � K(X;Y ): Therefore, we mayassume that ~f has the form S ! K(X;Y ): By the above-mentioned fact, we haveK(X;Y ) = X�
̂iY: Moreover, the action of S on K(X;Y ) naturally coincideswith the action ��
̂i�0; where �0 is the trivial action of the one-point monoid. ByProposition 4.2 and Lemma 6.2, �� is continuous at (f; t): Now, Proposition 2.9completes the proof. �The compactness of f0 is essential. For an appropriate counterexample, takef0 = 1X and a non-uniform continuous semigroup representation.E. \Small" orbits.Theorem 6.14. Let � : S � X ! X be a continuous linear action of a Bairetopologized semigroup on a normed space X , let Y be an ` .t.s., and let f0 : X ! Ybe a continuous linear operator. Suppose that for every s 2 S there exists U 2 Nssuch that f0U is uniformly Lindel�of (e.g., precompact, separable, Lindel�of, ccc).Then the action �L : L(X;Y ) � S ! L(X;Y ) is continuous at (f0; t) for everyt 2 SCr :Proof. As in the proof of Theorem 6.13, it su�ces to show that ~f0 : S ! L(X;Y )is continuous at every t 2 SCr : This can be done by combining Proposition 3.10(i)and Lemma 5.5(b). �We list here some known results which can easily be obtained by adapting6.14.(a) [35, Theorem 3.4] Let � : [0;1)�X ! X be a continuous linear action of[0;1) on a Banach space X; and let f0 2 X�: Then ~f0 : [0;1) ! X� iscontinuous at every t > 0 i� the orbit of f0 is (weakly) separable.



20 (b) (See [46, 11], [25] (for second countable G)) Let G be a locally compactgroup. If the G -orbit of a measure m 2 M(G) = (C0(G))� is separable,then the orbit map ~m is continuous (and, hence, m is absolutely continu-ous).(c) [39] If G is a locally compact group and f0 2 L1(G) = (L1(G))� has aseparable orbit, then the orbit map ~f0 is continuous.Recall that a Banach space X is said to have the point of continuity property(abbr.: (PC)) if each bounded closed set C admits a point of continuity of theidentity map (C;weak)! (C;norm) . This property can be characterized in termsof fragmentability. By [13, 3.13] X has the property (PC) i� each weakly closedbounded subset of X is huskable (in our terminology: locally fragmented). Anotherway to say this is: every bounded subset of X is fragmented [21, p. 665]. Banachspaces with the Radon-Nikodym property or with (weakly) �Cech-complete ball havethe property (PC) [13, 3.14].Sometimes the weak continuity of an orbit mapping implies its continuity.Several results of this kind can be found in [12, 18, 26, 30].Theorem 6.15. Let � : S�X ! X be a linear action on an ` .c.s. (X; � ) suchthat � is continuous at (p; 0) for every p 2 S . Suppose that s C` t , x0 2 X and~x0 : S ! X is weakly continuous. Then ~x0 is � -continuous at t under each of thefollowing conditions:(i) X is a Banach space with the property (PC);(ii) There exists a separable Baire nbd U of s:If the action is equicontinuous, then in both cases we may assume that s Cẁ t .Proof. Proposition 2.6(i) shows that X is � -uniform.(i) By proposition 2.8, Ux0 is norm-bounded for a certain nbd U of s . Above-mentioned characterization of (PC) implies that Ux0 is fragmented. Then byLemma 3.2(b) the map ~x0 is locally fragmented at s . For the rest use Lemma5.5(a).(ii) Since ~x0 is weakly continuous, Ux0 is weakly separable, and, hence, even� -subseparable (a subset of a separable set) because � is locally convex. Therefore,Ux0 is uniformly Lindel�of. By Lemma 3.4(b) and Proposition 3.10(i), S is locallyfragmented by ~x0 at s . Now Lemma 5.5(a) completes the proof.If the action is equicontinuous then use Lemma 5.5(c). �Corollary 6.16. Let S be a Baire locally separable semitopological group. ThenRUC(S) =WRUC(S) (for de�nitions see, for example, [12]).F. Actions on quasi-Montel spaces.Theorem 6.17. Let X be a quasi-Montel space, P a topological space and� : P �X ! X a continuous right linear function.(i) For every normed space Y , the induced map �L : L(X;Y )� P ! L(X;Y )is separately continuous.(ii) If P is locally compact, then �L is jointly continuous for every ` .t.s. Y:Proof. (i) For each f0 2 L(X;Y ) , use Lemma 6.1(i) (with F = ff0g) andProposition 4.4.(ii) Instead of Lemma 6.1(i), use Lemmas 6.1(ii), 2.7 and 2.4(iii). �
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