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Fragmentability and Continuity of Semigroup Actions

Michael G. Megrelishvili

Communicated by Jimmie D. Lawson

Let a topologized semigroup S act continuously and linearly on a locally convex
space X. We find sufficient conditions for continuity of induced actions on the
spaces of linear (compact) operators and on the dual space X*, for instance. The
notion of fragmentability in the sense of Jayne and Rogers and its natural uniform
generalizations play a major role in this paper. Our applications show that problems
concerning the continuity of induced actions have satisfactory solutions for Asplund
Banach spaces X (without additional restrictions, if S is a topological group) and,
moreover, for a new locally convex version of Asplund spaces introduced in the paper.
The starting point of this concept was the characterization of Asplund spaces due to
Namioka and Phelps in terms of fragmentability.

1. Introduction

Let m: S x X — X be a continuous linear action of a topologized semigroup
S on a linear space X. For every linear space Y, denote by L(X,Y) and K(X,Y)
the linear spaces of all linear and compact operators respectively, endowed with the
strong, that is, the topology of bounded convergence. Consider the induced (right)
action:

b L(X,Y)x S = L(X,Y), (fs)(z)= f(sz).

(We write sz, fs instead of 7(s,z) and wl(f,s), respectively). The dual action,
that is, the case Y := R (the field of reals), is denoted by 7*: X* x S — X*. The
subset of all functionals f € X* for which the orbit map f: S — X, f(s) = fs, is
continuous (at fixed s € S) is denoted by X© (resp.: X®(s)).

Frequently, X® may be a proper subset of X* even for the semigroups S := R
and S := [0,00) (see sections 1.3 and 1.5 in [36]). More generally, the space
of all absolutely continuous measures on a locally compact group G is just the
set of all such functionals m € (Cy(G))* = M(G) for which the orbit mappings
m: G — M(G) are continuous (cf. [40, 41, 11]).

We study the following general question:
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Question 1.1. For which restrictions on the spaces X, on the operators f €
L(X,Y) and on the elements s € S, is the pair (f,s) a point of joint (or separate)
continuity for #Z? In particular, when do we have X© = X*?

For Y := R we refer, among others, to [5, 18, 26, 30] and to the references
there. For the important case of one-parameter semigroups see, [36].

Recall some positive results.

1.2. Let S be a locally compact topological group, and let X be semireflexive.
Then 7* is continuous [5, 30].

1.3. If X is a Banach space such that the dual X* has the Radon-Nikodym
property (by Stegall’s result [45], it is equivalent to saying that X is Asplund),
and if S is the one-parameter semigroup [0,00), then 7* is continuous at every
(f,t), where f € X* and t > 0. This is proved by Arendt in [3] and, later, by van
Neerven [35] in a somewhat stronger form.

One of the main purposes of the present paper is to provide a unified approach
to such results. We generalize 1.2 and 1.3 in several ways:

(a) We have found a more general class (NP) of spaces X, called Namioka-
Phelps spaces, in which the same conclusions hold;

(b) If X is an Asplund Banach space, then 7* is continuous for any topological
group S. More generally, if S is a topological subsemigroup of a topological
group G, then 7* remains continuous at every (f,t), where f € X* and
t € int(S) - int(S);

(c) Analogous results are valid sometimes if X* is replaced by K(X,Y) (see
6.13).

In section 3 we investigate a generalized version of fragmentability. This is an
attempt to synthesize some known facts and definitions from [34, 22, 31, 20, 47,
13]. Section 4 is devoted to the class (NP) of Namioka-Phelps spaces. We say
that a linear topological space X is (N P) if every equicontinuous subset F' of X*
is fragmented. More precisely, this means that for every element ¢ of the natural
uniformity on X* and every non-empty subset F; C F, there exists an w*-open
subset O of X* such that O N F; is non-empty and e-small. If X is a Banach
space, then this definition gives exactly Asplund spaces. This follows directly from
the well-known characterization due to Namioka and Phelps [34]. We show that
(NP) contains all Asplund linear spaces in the sense of [4, 44], all semireflexive
and all nuclear spaces. The class (N P) is closed under taking subspaces, arbitrary
products and direct sums. Moreover, using the Diestel-Morris-Saxon result [9], it
can be proved that (NP) contains the variety generated by the class of all Asplund
Banach spaces.

Section 5 contains some useful “transport arguments.” Our main applications
are concentrated in section 6. In particular, we generalize the above-mentioned
results 1.2 and 1.3. Moreover, some “small-orbit results” are discussed there. It
is a well-known observation that the smallness (separability, for instance) of the
orbit of a functional f € X* frequently implies that f € X©. This happens, for
example, for measures on a locally compact group G. Such a result was obtained
first in [25] for a second countable G and in its full generality in [46, 11]. Another
example in this spirit, when f € L>(G) = (L'(G))*, can be found in [39]. Jan van
Neerven [35] proved that for one-parameter semigroups on a Banach space X, the
orbit of f € X* is (weak) separable iff f € X©(¢t) for every ¢t > 0. We show that
some results of this kind can be unified in the framework of the general machinery
developed in sections 3 and 5.



2. Preliminary results

Throughout the paper, all spaces are assumed to be Hausdorff and all linear
spaces are real. The filter of all neighborhoods (nbd's) of a point z is denoted by
N,. The identity of a monoid and the origin of a linear space are denoted by e and
0, respectively.

Let m: Px X =Y, w(p,z) = px be a function. Then the rules #(p) = pz =
p(z) define the functions: Z: P = Y,p: X — Y. We use the following notation:

Conf)(w = {a: cX ‘ Z is continuous at p} Con® (m) =n {Cone (m) ‘ pE P} ,

Conl(7) = {p eEP ‘ P is continuous at x} Con"(7) =N {Con () ‘ T € X} ,

g

Cong(m) = {p epP ‘ 7 is continuous at (p,x )}
Con(m) = {(p,z) € P x X | 7 is continuous at (p,z)} .

~—

COHp(ﬂ' = {:E eX ‘ 7 1s continuous at p,x

The following useful lemma is well known (see, for example [42, p. 47]).

Lemma 2.1. Let Con"(n) = P, X compact and Y a uniform space. Then for
every po € P, the family X = {#: P - Y ‘ x € X} is equicontinuous at po iff
X = Cony, ().

The following definition generalizes the notion of uniform equicontinuity and,
as we will see below, in some sense is good enough.

Definition 2.2. Let w: P x X = Y be a function, where P is a topological
space, and (X, pu) and (Y,¢) are uniform spaces. A subset A C X is called «-
uniform at py € P if for every entourage ¢ € ¢, there exists (§,U) € pu X Ny,
such that for every p € U and every (a,b) € 6 N (A x A), holds (pa,pb) € ¢. If
A is m-uniform at every p € P, then A is called mw-uniform. Analogously, subsets
A C X which are m-uniform at py € P can be defined for functions 7 of the form
XxP—=Y.
In 2.3, 2.4 and 2.5 we will keep the notation of 2.2.

Examples 2.3.

(a) Let U € N,, and U= {p: X =-Y ‘ p € U} be uniformly equicontinuous.
Then X is m-uniform at po.
(b) Let A={a: P —-Y ’ a € A} be equicontinuous at pg and the restriction

Do ’A: A — Y be uniformly continuous. Then A is m-uniform at py.

(c) If X is compact, Con"(m) = P and X = Con,,(7), then X is m-uniform
at pg.

(d) If 7: GXX — X is an action of a topological group G, and y is a uniformity
on X, then X is w-uniform at e iff 7 is quasibounded in the sense of [27].

(e) Let m: G x X — X be an action of a Baire topological group G on a
metric space (X,d). Suppose that each §: X — X(g € G) is d-uniformly
continuous and every §: G — X(y € Y) is continuous for a certain dense
subset Y C X. Then X is m-uniform.

Proof.  (a) is trivial and (b) is straightforward, (c) follows from (b) and Lemma
2.1. For (e), use (d) and Theorem 1.10 from [27]. O



Lemma 2.4. Let A C X be w-uniform at pg € P and suppose Con"(w) = P.
Then
(1) The closure cl(A) is also m-uniform at pg.
(i) If A C (AN Conﬁu(ﬂ)), then the restricted map P x cl(A) — Y s
continuous at (pg,xz) for every x € cl(A).

(iii) If A = X, then the subset Cony, () is closed and coincides with Conf;n(ﬂ).

Proof. (i) For a fixed ¢ € ¢, choose g1 € £ such that £ C . According to
Definition 2.2 there exists (6,U) € p x N, such that:

(pa,pb) € &1 for every (a,b) € 6N (A x A) and every p € U.

Take d; € p with 63 C 6. Then (1,U) is the desired pair satisfying Definition 2.2
for cf(A). Indeed, for an arbitrary but fized pair (z,y) from 6; N (cl(A) x cl(A))

and a fized element p € U, by the continuity of p, we can choose elements a,b € A
such that:

(a,x) € 61, (y,b) € 61, (px,pa) € ey, (pb,py) € e1.

Clearly, (a,b) € 63 C §. Then (pa,pb) € £1. Finally, observe that (pz,py) € 3 C ¢.

(ii) By (i) we may assume that cf(A) = A. For a fixed (ag,c) € A x &, choose
(61,8) € € x p and U; € N,, such that ¢} C ¢ and (pz,py) € &1 for every
(z,y) € 6N (A x A) and p € U;. Choose a symmetric §; € p such that 672 C § and
take an element a € AN Conﬁ)o(w) such that (ag,a) € §;. For a certain Uy € N, ,
(poa,pa) € e for every p € Us. Then if (ag,z) € 1, v € A and p € Uy NUs, we
have (pa,pz) € &1 because (a,z) € 2 C §. Then (pgag, pz) € &5 C ¢.

(iii) Follows easily from (ii). O

Corollary 2.5. Let every p: X — Y(p € P) be uniformly continuous. Denote
by X and Y the corresponding completions, and let 7w: P x X =Y be the induced
function.
(i) If X is m-uniform at py € P, then X is #-uniform at po. If, in addition,
X = Cony,(m), then X = Con,, (7).
(i) If m is continuous and X is w-uniform , then T is continuous and X is
T -uniform.

Proof.  For (i) apply Lemma 2.4 to 7. The case (ii) follows from (3i). O

Proposition 2.6. Let X,Y be topological groups, each endowed with its left
uniformity, and let m: P x X — Y be a function such that every p: X — Y(p € P)
18 a homomorphism.

(1) Xis m-uniform at pg € P iff (po,e) € Con(n).
(ii) If (po,e) € Con(m) and P = Con"(n), then Con,,(m) = Confm(w).
(iii) If X = Cony,(m) and P = Con"(n), then X = Cony, (7).
(iv) If m is continuous, then 7 is also continuous.
Proof. (i) is straightforward. For (ii), use (i) and Lemma 2.4 (iii). In order to
establish (iii), combine (i) with Corollary 2.5 (i). Clearly, (iii) = (iv). O

In general, 7 is not continuous even for group actions (see [28]).



Let X be a linear topological space, and let 7: P x X — X be right linear
(i.e., each p is linear). We say that m is locally bounded at py € P if for every
bounded subset B of X there exists U € N, such that UB := {pz ‘ pe U,z € B}
is bounded. The function 7 is called locally equicontinuous at py if there exists
U € Np, such that U is equicontinuous.

Lemma 2.7.

(i) If m: Px X — X is locally equicontinuous at pgy, then 7 is locally bounded

at pog.
(ii) If 7 is locally bounded at py, then w«*: X* x P — X* is conlinuous at
0,p0) (and therefore X* is ©* -uniform at pg by Proposition 2.6(i)).
» D Po 0y P
(i) If m is continuous and C is a compact subset of P, then C is equicontin-
uous.

Proof. (i) and (ii) are straightforward, and (iii) is a variant of Lemma 2.1. O

Proposition 2.8. Let (X,|| ||) be a normed space, and let m: P x X — X be
a right linear function. Then the following conditions are equivalent:

(i) m is continuous at (pg,0).
(i) m is locally equicontinuous at py.

Proof. (i) = (ii) Since 7 is continuous at (pp,0), there exist U € N,, and
a number § > 0 such that the inequality |a|| < ¢ implies that ||pa|l < 1 for
each p € U. Then the norm of p is not greater than % for every p € U. Indeed,

pH%” xH < 1. Therefore,

observe that H ﬁ :EH = ¢ for every x # 0. By our choice,
Ipe|| < 5 [|]-
The implication (ii) = (i) is trivial. O

Let Py, P> be topological spaces, X1, X9 normed spaces, and 7 : P, X X —
Xpg, k € {1,2}, functions, where p: X — X is a linear bounded operator for every
k € {1,2} and every pi € Pi. Consider the right linear map:

T & o (P1 XPQ) X (X1®X2)%X1®X2,
(p1:p2)7zxj®yj — Zplﬂfj ® p2Yy;.
j=1 j=1

The projective and injective tensor norms ||m||,, ||m||; of m € X; ® X5 are defined
by the rules:

n n
lmllp = inf & llagll - llysll [m =z @y o,

Imlls = sup § > filz;) folys) [m =D 23 @y, | Al < LIl 1,71 € X7, fa € X5
j=1

i=1

The projective and injective tensor products of X; and X5 are the completions
of X7 ® Xy with respect to the norms || ||, and || ||; respectively, which we



denote by X1®pX2 and X;&;Xs. For every (p1,p2) € Py X Py, the corresponding
w1 ® mo— translation of X; ® X5 is bounded with respect to both norms. Therefore,
m ® mo can be extended to right linear functions:

7I'1®p7T22 (P1 X P2) X (X1®pX2) — X1®pX2,
7T1®Z'7T21 (P1 X P2) X (X1®ZX2) — X1®iX2‘

Moreover, we have the following useful result.

Proposition 2.9. With the above motation, let w, be continuous at (pg,a:k)
for every x, € X and fixed pg €P, (ke {},2}). Then 7r1®?7r2 and ™ &;7e are
continuous at (p(l],pg,m) for every m € X1®,Xs or m € X1®;Xo, respectively.

Proof. By Proposition 2.8, each p{ has an nbd Uj such that Uy is norm-
bounded with respect to the norm of Xy, (k € {1,2}). The explicit description of the
norms || |, || ||; shows that for the nbd U; x Uy of (p[l),pg) , the family of operators

Ui x Uy will be norm-bounded with respect to both norms. Therefore, m ®p7r2,
w1 &®;my are continuous at (p(l),pg, 0) . By assertions (ii) and (iii) of Proposition 2.6,
it suffices to prove that the orbit mappings m: Py x P, = X3 ®pX2, m: PLx Py —
X1®;X5 are continuous at (p(l),pg) for every m from the dense subset X; ® Xs.
Since ||m||; < |[m||, (see Proposition 7.2.1 in [36]), we have only to examine the
“projective case”. This can be done easily for elementary tensors z; ® x5 using
the well known identity ||z1 ® z2||, = ||z1]| ||z2||. Since such tensors span every
m € X1 ® X5, the proof is completed. O

3. Fragmentable functions and sets

Let (X, 7) be a topological space, and let p be a metric on the set X. Following
Jayne and Rogers [22], we say that X is fragmented by p if for each non-empty
subset A of X and for each € > 0, there exists a 7-open subset O of X such that
ONA#¢ and p-diam (ONA)<e.

We need the following generalization.

Definition 3.1. Let (X,7) be a topological space, ? a system of subsets in
X,and f: X = Y a fixed (not necessarily continuous) function from X into a
uniform space (Y, u). We say that ? is fragmented by f (with respect to the pair
(r,p)) if for every non-empty A € ? and element £ € p, there exists a 7-open
subset O of X such that ON A # ¢ and f(ON A) is e-small (i.e., (z,y) € ¢ for
z,y € f(ON A)). In the special cases 7 = N, or ? = 1, we say that X is locally
fragmented at = or, respectively, locally fragmented. If 24 C 7 then we simply say
that A is fragmented.

Besides the usual notion of fragmentability, Definition 3.1 generalizes one more
concept. Namely, f is cliquish (at z) in the sense of Thielman [47] iff X is locally
fragmented (at z) and p is a metric. Huskable sets [13] are also a particular case
of local fragmentability. It is also a remarkable fact that if a function f: X — Y
is quasi-continuous in the sense of Kempisty [23, 17] (see also modified continuity
in [15]), then X is locally fragmented.



Lemma 3.2. Let ? be a system of subsets in X, and let f: (X,7) = (Y, u) be
a fized function from a topological space (X, T) into a uniform space (Y, ).

(a) If the system cl(?) := {cl(A) ‘ A € 7} is fragmented by f, then 7 is
fragmented by f.

(b) If h: (X1,7) = (X,7) is a continuous function, and for a certain A C X,
the subset h(A) of X is fragmented by f, then A is fragmented by foh
w.r.t. (11, 1).

(c) If every non-empty closed subspace X1 C X is locally fragmented at some
point by the restricted function f ‘Xl w.r.t. <T ‘Xl’“)’ then X 1s frag-
mented by f w.r.t. (7, ).

(d) If f is locally fragmented, (X,T) is a Baire space and p = p is a metric,
then f 1is continuous at the points of a dense G5 subset D of X.

Proof.  We omit the easy proof of (a), (b), (¢). In order to check (d), for a fixed
€ > 0 consider the open set O, — the union of all 7-open subsets O of X such
that p-diam (f(O)) < e. Then local fragmentability guarantees that O, is dense.

It is easy to see that D :=nN {Ol n e N} is the desired dense G§ subset. O

Note that the assertion (d) was actually known. Its variant has been formulated
without proof in [47, Theorem IV]. The present proof, which is very close to the
proof of part (i) = (ii) in Lemma 1.1 of [33] (see also [15, Theorem 1.1]), is given
here for the sake of completeness.

Let a system & of subsets in a topological space X be directed (upwards under
the inclusion), and let (Y, u) be a uniform space. By Cs(X,Y) we will denote the
set C'(X,Y) of all continuous maps from X into ¥ endowed with the uniformity
pe of uniform convergence on elements of ®. Recall that a standard base of this
uniformity is the system {[A,¢] ‘ A€ P, ¢ € u}, where [A,e] = {(¢1,p2) ’
(p1(a),p2(a)) € e Ya € A}. The set C(X,Y) with the pointwise topology will be
denoted by C,(X,Y).

Lemma 3.3. Let ® be a directed system of subsets in a topological space Y such
that ® contains a fundamental subsystem ®1 consisting of compact subsets. Let
(Z, 1) be a uniform space. Suppose that (X, 7) is a Cech-complete space and that
the function

f: (X,T) - Cp(Y, Z), T Py

is continuous. Then X is fragmented by f w.r.t. (7, us).

Proof. Let ¢ # X7 C X, K € ® and € € u. We have to show that there exists
a 7-open subset O of X such that O N X; # ¢ and f(ON X;) is [K,e]-small.
We may assume that K is compact (by our assumption on ®) and X; is 7-closed
(Lemma 3.2 (a)). There exist a metric space (M, p), a uniformly continuous map h
of Z onto M and a positive number § such that the inequality p(h(z1),h(22)) < 8
implies that (z1,22) € €. Consider the (separately continuous) evaluation map:

mx, kX1 XK > M | (z,y) = h(p(y)).
By Namioka’s theorem [32, Theorem 1.2], there exists a dense subset D of X; such

that 7x, x is jointly continuous at every (z,y), where z € D and y € K. Lemma
1.1 now yields that the family {hog: X1 - M ‘ y € K} is equicontinuous at every



x € D. Choose arbitrarily xg € D. Then there exists a 7-open nbd O of xy such
that

p(h(g(x0)), h(i(x))) = p(h(pz, (¥)), h(@2(y))) <
This implies that f(O N X;) is [K,¢]-small. O

Next, we make some notational conventions. Let X be a linear topological
space (£.t.s.), and let u be its natural uniformity. By p* we denote the uniformity
of the strong dual X*. The weak and weak™ topologies on X and X* will be
denoted by w and w* respectively. If A is a subset of X (X*), then we say that A
is fragmented if A is fragmented by the inclusion map f=14: A — X (A — X*)
with respect to (w,u) (resp.: (w*,p*)). The systems of all bounded subsets of X
and all equicontinuous subsets of X* are denoted by ®, and ®., respectively.

The first assertion of the following lemma easily follows from the definitions.

VreONX; VyeK.

N| &

Lemma 3.4. (a) Let Y be an L.t.s. Then L(X,Y) is a uniform subspace of
Cs,(X,Y).

(b) [43, Ch. 1V, 1.5, Corollary 4] FEvery locally convex space (£.c.s.) X is a
uniform subspace of Cq,eq(X*,R).

The following result is well known for Banach spaces [33, Theorem 1.2].

Proposition 3.5. FEvery relatively weakly compact subset A of an £.c.s. X 1is
fragmented.

Proof. By [43, Ch. III, 4.3], the system ®., has a fundamental subsystem
consisting of weak *-compact subsets. Therefore we can apply Lemma 3.3 to the
w-continuous inclusion cf,,(A) — Cp(X™*,R). Then ¢, (A) (and, hence, its subset
A) is fragmented. O

Proposition 3.6. If X 1s semareflexive, then every relatively weak™ -compact
(and, hence, every equicontinuous) subset A of X* is fragmented.

Proof. The semireflexivity of X means that each bounded subset of X is
relatively weakly compact. Taking into consideration that every weakly compact
subset of X is weakly bounded and, hence, bounded, we can apply Lemma 3.3
to the weak *-continuous inclusion map cf,+(A) — Cp(X,R) and the system ®,.
O

Definition 3.7.  Let (X, p) be a uniform space, and let ¢ € u. We say that X is
e-Lindeldf if the uniform cover {&(z) ‘ z € X}, where e(z) = {y € X ’ (z,y) € €},
has a countable subcover. If X is e-Lindelof for each ¢ € y, then it will be called
uniformly Lindelof.

We mention that (X, u) is uniformly Lindeldf iff it is Rg-precompact in the
sense of Isbell [20] iff X is Ng-bounded in the sense of Guran (cf. Definition
2.4 in [48]). We prefer the name “uniformly Lindel6f” in order to avoid possible
misunderstandings in linear spaces. If X, as a topological space, is either separable,
Lindel6f or ccc (see [20, p.24]), then (X, u) is uniformly Lindel6f. For a metrizable
uniformity p, (X, u) is uniformly Lindeldf iff X is separable. Uniformly continuous
maps move uniformly Lindelof subspaces onto uniformly Lindelof subspaces. Guran
showed [16] that a topological group G endowed with its left or right uniformity is
uniformly Lindelof iff G is a topological subgroup in a product of second countable
groups. As is well known, every f.c.s. X is a linear topological subspace in a
product of normed spaces. Combining these facts we obtain



Proposition 3.8. An l.c.s. X is uniformly Lindelof iff X is a linear topological
subspace in a product of separable normed spaces.

Definition 3.9. Let f: X — Y be a map from a topological space X into a
uniform space (Y, u). We say that f is locally uniformly Lindelf at a point x € X,
if for every ¢ € p there exists U € N, such that f(U) is e-Lindelof (this holds,
for example, if f(Up) is uniformly Lindeldf for a certain Uy € N,).

This definition is closely related to a concept from [31] called the index of
non-separability. If p is a metric, then the condition in Definition 3.9 can be
reformulated by saying that for every € > 0 there exists U € N, such that the
index of non-separability G(U) is less than . Hence, this gives a single-valued
variant of the “3 upper semi-continuity” [31, p. 70].

Proposition 3.10. Let ® be a directed system of subsets in a topological space
Y, and let (Z, p) be a uniform space. Suppose that (X, 7) is Baire and the function
[: X = Cpy(Y,Z),z— ¢, is continuous.
(1) If f: X = Cs(Y,Z) is locally uniformly Lindeldf at xo € X, then X is
locally fragmented by f at zy w.r.t. (7,pe).
(i) If X is hereditarily Baire (i.e., each closed subset is Baire) and f: X —

Cs (Y, Z) is locally uniformly Lindeldf at each point, then X is fragmented
by f w.r.t (T,pe).

Proof. (i). Let W be an open nbd of zg, A € ® and ¢ € p. Our aim is to
find an open subset O of W such that f(O) is [A,¢]-small. Choose symmetric
§ € p such that 62 C . We can suppose that § is a closed subset of Z x Z. Since

f 1s locally uniformly Lindelof at z(, there exists an open nbd U of zy such that
UCW and f(U) is [A,d]-uniformly Lindel6f. Thus, there exists a sequence (z,,)
in U such that

F(U) CU{[A,4] (fo,) | n €N},

where

[A,5] (f:cn) = {QO € C(Y7Z) ‘ (f:cn(y),‘»p (y)) € Vye A}‘
Then

U=U{M,|neN}for M, :={z €U | (fo,(v), fu(y)) €6 Vye A}.

Since ¢ is closed and f is (7,p)-continuous, one can easily see that each M,, is
closed in U. By the Baire category theorem, a certain M, contains a non-empty
T-open subset O. Then, (fmm’fm) € [A, 0] for every x € O. This implies that
f(0) is [A,e]-small, because 62 C «.

For (ii), use (i) and Lemma 3.2 (c). O

Corollary 3.11. Let Y be an L.t.s. (or an (.c.s.), and let X be a uniformly
Lindelif subset of Y* (resp.: Y ). If X is hereditarily Baire in the weak™ (resp.:
weak) topology, then X is fragmented.

Proof.  Apply Proposition 3.10(ii) to the inclusion (X, w*) — C,(Y,R) and the
system ® = @ (resp.: (X,w) — Cp((Y*,R) and ® = &, ). O



Corollary 3.12. Let X be a Baire topological space.

(1) Suppose that (Y,7) is an £.c.s and that f: X — Y is weakly continuous.
If f(X) is second countable w.r.t. T, then f is T-continuous at each point
of a dense Gg subset of X.

(i) Suppose that (Y,7) is an £.t.s., (Y*,7*) denotes its dual, and f: X = Y™
is weak™ -continuous. If f(X) is second countable w.r.t. T*, then f is
T* -continuous at each point of a dense G5 subset of X.

Proof.  Use Proposition 3.10 (i) and Lemmas 3.4, 3.2. O

Remark 3.13. If| in the assertion (i) of Corollary 3.12, the space Y is assumed
to be normed, then we obtain a result of Alexiewicz and Orlicz [1].

Recall that a real-valued function f defined on an open convex subset U of
a linear topological space X is called Fréchet differentiable at xy € U whenever
there exists u € X™* such that for every bounded B C X and every £ > 0, there
exists § > 0 such that for all z € B and for all ¢ with the property 0 < [t| < 4,
the following inequality is satisfied:

flzo + tz) — f(zo)
t

— u(a:) < €.

The function u is denoted by f’(zg). In the definition, § can be chosen so small
that for every t € (0,6) and every € B, holds

(D) fwo +1a) + f(wo — ta) — 2f(w0) < L.
A weak™ slice of a nonempty subset A C X* is a subset of A of the form:
S(zo, A,0) = {f € A| f(zo) > ga(z0) — a},
where 9 € X,a > 0 and o 4(z) :=sup {f(z) | f € A}.

Proposition 3.14. Let X be a linear topological space, and let F' be an
equicontinuous subset of X*. Suppose that for every non-empty relatively w* -
closed subspace A of F', the sublinear functional 04: X — R, defined by the rule
oa(z) =sup {f(z) ‘ f € A}, is Fréchet differentiable at some point (depending on
A) x of X. Then F is fragmented.

Proof. Fix € > 0 and a bounded set B C X. We have to show that for every
non-empty subset A of F', there exists a relatively w*-open non-empty subset O
which is [B, ¢]-small. Tt suffices to find a [B, ¢]-small weak* slice of A. By Lemma
3.2 (a), we may suppose that A is relatively w*-closed in F'. Consider the function
o 4. It 1s continuous because A is equicontinuous. Suppose that every weak™ slice
of A is not [B,e]-small. As in the proof of Lemma 2.18 in [38], we will show
that o4 1s nowhere Fréchet differentiable. Let z € X. By our assumption, for
each n > 1 the weak™ slice S (:E,A, 3%) is not [B,e|-small. Therefore, there exist

fnyhn €5 (:B,A, 3%) and z, € B which satisfy

|fn(Zn) — hn (z0)] > €.



On the other hand, by the definition of slice we have:

fn(x) > UA("”) — 3% , hn(m) > O'A(x) — 3%

Then

',“Bn :L‘n
oA (:13+ —) +o04 (:v— —) — 204(z) >
n n

> fo (4 22) 4 ho (2= 22) = (fu 4 ha) (x)_g_fl:

This contradicts the inequality (D). O

4. Namioka-Phelps spaces

Recall [4, 44] that a linear topological space X is said to be Asplund if every
continuous convex real function defined on an open convex subset of X is Fréchet
differentiable on a dense G§ subset of its domain. If, in the definition, “dense Gg”
is replaced by “dense”, X is called a Fréchet differentiable space.

For Banach spaces, these definitions give the same classes. General Asplund
spaces are studied systematically in [44, 14]. For information on Asplund Banach
spaces, see for example [34, 45, 6, 38]. Among various characterizations of Asplund
Banach spaces, we mention here only two. The first one states that a Banach space
X is Asplund iff X* has the Radon-Nikodym property [45]. In 1975 Namioka and
Phelps [34] proved that a Banach space X is Asplund iff every bounded subset of
X* is fragmented. The last criteria justifies the following main definition.

Definition 4.1. We say that an £.t.s. X is Namioka-Phelps (abbr.: (NP)) if

every equicontinuous subset of X* is fragmented.

Recall that if X is a normed space then a subset F' of X™ is equicontinuous

if and only if F' is bounded.

Proposition 4.2. Every Fréchet differentiable (and, hence, every Asplund)
space is (NP).
Proof. Directly follows from Proposition 3.14. O

Proposition 4.3. Every semireflexive space is (NP).

Proof. Directly follows from Proposition 3.6. O

An f.cs. X is called semi-Montel [37] if every bounded subset of X is
relatively compact. We say that an f.c.s. X is quasi-Montel if every bounded
subset of X is precompact. By [43, ch. III, §7, Corollary 2], every nuclear space is
quasi-Montel.

Proposition 4.4. Let X be a quasi-Montel space, and let Y be a linear
topological space. Then for every equicontinuous subset F' of L(X,Y), the topology
of pointwise convergence and the strong topology coincide on F.

Proof. The strong topology is the topology of bounded convergence. By our
assumption, every bounded subset of X is precompact. Now our assertion follows
from the fact that the topologies of precompact and simple convergence coincide
on F (see [43, 111, 4.5]). O



Corollary 4.5. Every quasi-Montel space is (NP).

Proposition 4.6. Let X be a linear topological space. If X* (or, at least, each
equicontinuous subset of X* ) is uniformly Lindeldf, then X is (NP).

Proof. By [43, III, 4.3], every equicontinuous subset F' of X* is contained in a
weak *-compact equicontinuous subset cf,,«(F), which is fragmented by Corollary
3.11. ]

Remark 4.7. (a) The last result generalizes the well-known fact in the theory of
Asplund spaces, which states that each Banach space X with the separable dual
X* is Asplund.

(b) Corollary 4.5 can also be derived from Proposition 4.6 because, as follows
easily from [43, III, 4.3], each equicontinuous subset of X* is relatively compact in
the strong topology whenever X is quasi-Montel.

The following result is a minor modification of Lemma 2.1 from [33].

Lemma 4.8. Let (X,7x) and (Y,7y) be compact (Hausdorff) spaces, and let
ux and py be uniformities on the sets X and Y respectively. Suppose that there
1s a continuous surjection f: X — Y which is also uniformly continuous w.r.t. pux
and py. If X is fragmented by the identity map 1x: X — X w.rit. (7x,ux),
then' Y is fragmented by the identity map 1y : Y =Y w.rt. (17v,py).

Proof. Let A be a non-empty 1y -compact subset of Y, and let ¢ € uy. Choose
§ € ux such that (f x f) (§) C . By Zorn’s Lemma, there exists a minimal 7x -
compact subset M of X such that f(M) = A. Since X is fragmented, there exists
V € 7x such that VN M # ¢ and VN M is §-small. Then the set f(V N M) is
e-small. Consider the set W = A\ f(M \ (VN M)). Then

(a) W is e-small, being a subset of f(V N M);

(b) W is relatively 7y -open in A;

(c) W is non-empty (otherwise M \ (V N M) is a proper Tx-compact subset
of M such that f(M\ (VN M)) =A).

Therefore, by Lemma 3.2 (a), the proof is complete. O

Proposition 4.9. If E is (NP) and M is a linear subspace of E, then M is
(NP).

Proof. Let Y be an equicontinuous subset of M*. By [37, 9.11.4 (a)] there
exists an equicontinuous (and, hence, fragmented) subset X of E* such that for
the canonical mapping ¢*: E* — M* (where q: M — FE is the inclusion), holds
q*(X) =Y. By the Alaoglu-Bourbaki theorem and Lemma 3.2 (a), we may assume
that X and Y are weak*-compact. The fragmentability of Y follows from Lemma
4.8, applied to the map ¢* ‘X: X — Y, which is weak *-weak ™ continuous and also
uniformly continuous when X and Y carry the uniformities pux and py inherited
from the strong uniformities. O

A linear map ¢: X — Y is said to be bound covering if for every bounded
subset A of Y, there exists a bounded subset B of X such that ¢(B) = A. A
linear open map of a normed space onto a normed space is a bound covering. For
more information see [8].



Proposition 4.10. Let g: X — Y be a continuous bound covering linear map.
If X is (NP), then' Y is (NP).

Proof. Let F' C Y™ be equicontinuous. In order to establish the fragmentability
of F, fix: a non-empty subset I} of F, a bounded subset A of Y, and a number
g€ > 0. Since ¢ is bound covering, there exists a bounded subset B of X such that
q(B) = A. The set

Fig={foqe X*| fe F}

is an equicontinuous subset of X* and, hence, it is fragmented because X is (NP).
Therefore, for [B,¢] there exist a finite sequence {z1,zs,...,7,} in X, a number
0 > 0 and a functional hy € Fjq such that for every h € Fiq satisfying the
condition

|ho(z;) — h(z;)] < 6 Vied{l,2,...,n},
we have
|ho(z) — h(z)| < € for every x € B.

Clearly, hg = fo o g for a certain fy € F;. Then

Ifoly) — fly)| <e for every y € A,

whenever
|folyi) — flyi) <0 Vie{l,2,...,n},

where f € Fy and y; denotes g(x;). This proves our assertion. O

Example 4.11. The class (NP) is not closed under quotients. In particular,

Proposition 4.10 may be false if g is not bound covering. Indeed, there is [43, TV,

Ex. 20] a Fréchet Montel (and, hence, (NP)) space E in which there exists a closed

subspace M such that E/M is isomorphic with the Banach space ¢! which is not

Asplund (or, equivalently, is not (NP)) by [34, Corollary 10]. This example also

shows that the class of all £/.c. (NP)-spaces is not a variety in the sense of [9].
However, we have:

Proposition 4.12. The class (NP) is closed under products and l.c. direct

sums.

Proof. Let X = ] X; be a topological product of (NP) spaces. Suppose F
iel

is an equicontinuous subset of X*. Fix: a nonempty subset F; C F, a bounded

subset B of X, and a number ¢ > 0. Since Fj is equicontinuous, the polar

P ={eeX||f(z)|<1 Vfem}

is a neighborhood of 0 in X. Therefore, for a certain finite J C I, the projection

pri (Flo) is X; for 7 € J. This implies that for every functional f = > f; from Fy,
iel
the functional f; € X is trivial for each ¢ € J. In fact, f can be represented as
=1
Jj€J
Every projection pr;(B) is a bounded subset of X;(j € J). Since pr;(F) is
an equicontinuous subset of X and Xj is (NP), for every j € J there exist:

(a) a functional h? € X7,
(b) A finite set {x{,x%, . ,w%j} C X;j,
(c) a number §; > 0



such that if

[ (xi)—hj <wi>‘<5j Vike{l,2...,n;},

then
€

|£i(y) — W (y)| < i

vy e pri(B).

Now, consider:
(1) the finite set {:f:i ‘ jeJ, ked{l,2,... ,nj}} C X, where i?ﬂ denotes the
element of [ X; having a:i in the j-th coordinate and all other coordinates
iel
are zero; ¢
(2) the number ¢ := min{J; ‘ jeJ}
(3) the functional hy := Y h/ € X*.
JjEeJ
We claim that for every f = ) f; € Fi, the finite system of inequalities:
JjE€J

‘f(a:;)—ho (ii)‘g(s Vied Yke{l,2, .. n}

imply that
|f(y) —ho(y)| <e VyeB.

‘f (ii) — hg (ai"i)’ =/ (mi) B (xi)‘ <6<

Then for every y = (y;)ics € B, holds:

Indeed,

£6) = o) = |3 (F3(0) = W) < 1) =W <11 7 = =

JjEJ

This proves our assertion for products.

For direct sums, the proof is quite similar. The following standard fact from
[43, I1, 6.3] plays the major role in the proof.

Fact. For every bounded subset B of a locally convex direct sum & X;, there
i€l
exists a finite set J C I such that pr;(B) is zero for every i & J.

O

Proposition 4.13. The class (NP) contains the variety generated by the

Asplund Banach spaces. In particular, every quotient of a subspace M of [] X,
el

where each X; is an Asplund Banach space, belongs to (NP).

Proof. An easy consequence of [9, Theorem 1.4] and the results of this section.

O



Remark 4.14. (a) By Proposition 4.13, the (NP)-space E from Example 4.11
is not contained in a product of Asplund Banach spaces.

(b) The class (ASP) of Asplund spaces is a proper subclass of (NP). Indeed,
(ASP) is not closed under locally convex direct sums [43, Example 6.1], in contrast
to (NP).

(c) Recall that if the dual E* of a Banach space is weakly compactly generated
(in the sense of [2]), then E is Asplund (cf. [34]). Is it true that an l.c.s. E is (NP)
if E* is weakly compactly generated (cf. [19]) ?

5. A “transport” argument

Definition 5.1. Let S be a topologized semigroup, and let P,(Q be subsets of
S. We say that an element ¢t € S is left (right) P -reachable from @Q if for every non-
empty open subset O C @ there exists p € P such that pO € N; (resp.: Op € Ny).
We write s <1 t or s <" t if there exists a non-empty compact subset Cst of S
such that for every nbd P of C;; there exists an nbd () of s such that ¢ is left
or, respectively, right P-reachable from ). One gets the weaker relations writing:
s <% t or s <7 t, whenever there exists Q € N, such that ¢ is left or, respectively,

right S-reachable from . Denote by g’ (547‘,543,54;> the set of all t € S
such that for a certain s € S, holds s ‘¢ (resp.: s <" t,s <%, t,s <7 t).

Lemma 5.2. Let S be a topological subsemigroup of a topological group G. Then
int(.S) -int(S) C SN S<". More precisely, if t = s1s2, where s1, 39 € int(S), then
so <t t with Csyt = {s1} and s1 <"t with Cs, s = {sa}.

Proof. For every nbd P of s; in S, choose an nbd U of e in G so small that
s$1U C P and U~ 'sy C int(S). Consider nbd Q := U~'sy of s5. Then t is left
P -reachable from ) because for every non-empty open subset O of (), we can take
u € U such that u='sy € O. Then for p := sju, holds t = (syu) (u='s3) € pO and
pO is open in S. This proves sy <* t with Cs,.+ = {s1}. Easy modifications prove
the second case. O

Corollary 5.3. (a) If G is a topological group, then G =aY =G

(b) [0,00)<" = [0,00)<" = (0, 00).

A topologized semigroup S is called left (right) topological if, for the multipli-
cation 7: S x S — S, we have Con’(n) = S (resp.: Con"(n) = S).

Lemma 5.4. Let S be a left (right) topological monoid, and let H(e) denote the
group of all units in S. If sH(e) (resp.: H(e)s) is dense in S, then s € S<w
(resp.: s € S ).

Proof. It is trivial to show that e <7, s (resp.: e < s). O

Lemma 5.5. (a) Let m: S x X — X be a semigroup action on a uniform space
(X, p). Assume that zg € X,s,t € S and the following conditions are satisfied:

(1) s bt

(2) X is m-uniform at every ¢ € Cyy;

(3) S is locally fragmented at s by the orbit map Zo: S — (X, p).
Then Zg 1s continuous at t.



(b) The same is true for a right action 7: X x S — X provided that “s <" t” takes
the place of (1).

(c) If S is p-uniformly equicontinuous, then in (a) and (b), condition (2) can be
dropped, and (1) can be replaced by the weaker assumptions: s <t and s <7t
respectively.

Proof. We prove only (a). Case (b) is similar, and (c) can be obtained by a
minor modification of (a).
Let ¢ € p. Since C,; is compact, by elementary compactness arguments,
making use (2), we can pick nbd P of C,, such that:
(*) There exists 6 € u such that (pz,py) € € for every (z,y) € § and p € P.
According to Definition 5.1, choose for P nbd @ of s such that ¢t is P-
reachable from Q. By (3) there exists an open non-empty subset O of @ such that
the set £o(O) = Oz is d-small. By our choice, for a certain p € P, holds pO € N;.
Then the set Z¢(pO) = pOzg is e-small by (x). This proves the continuity of Zg
at t. ]

Several transport arguments and their applications can be found in [26, 42].
6. Applications

Lemma 6.1. (i) Let X be an £.t.s., P be a topological space and m: Px X — X
a right linear map satisfying Con"(m) = P. For a normed space Z, consider the
induced map w': L(X,Z) x P — L(X,Z). If (po,0) € Con(n), then for every
equicontinuous subset F' of L(X,Z), there exists U € Np, such that FU is
equicontinuous in L(X, 7).

(ii) If we replace the assumption (pg,0) € Con(w) with the assumption that Q

15 equicontinuous for a certain Q) € Np,, then Z may be an arbitrary {.t.s.

Proof. (i) Since Z is normed, the system {% B ‘ n e N} , where B is the unit
ball in Z, is a local base at 0. As in the case Z := R, it is easy to show that a
subset E of L(X,Z) is equicontinuous iff £ C W° where W is a certain nbd of
0 in X, and W? denotes the “polar” of W, i.e., the set:

WO={feL(X.2) | |f@)l <1 VaeW}

Since F is equicontinuous in L(X,Z), there exists an nbd V of 0 such that
F C VO The continuity of m at (pg,0) implies that UW C V for certain nbd’s
U € Np,, W € Ny. Then, eventually, FU C W°.
The proof of (ii) is analogous and even easier and, hence, is omitted. O
Now we are ready to prove the following main lemma.

Lemma 6.2. Let X be (NP), and let n: S x X — X be a continuous linear
action. Denote by ©* the dual action X* x S — X*. If s <"t (s <, t) and
m 1s locally bounded at every q € Cs; U {t} (resp.: S is equicontinuous), then
X* = Cony(n*).
Proof. We prove only the “locally bounded” case. The second case is an easy
modification.

Fix f € X*. In order to establish that 7* is continuous at (f,¢), by Lemma
2.7(ii) and the ‘right’ version of Proposition 2.6(ii), it suffices to show that f: S —



X*,s — fs is continuous at ¢. By our hypothesis, condition (1) in Lemma 5.5(b) is
satisfied. Let ¢ € C5;. Since 7 is locally bounded at ¢, 7* is continuous at (0, c)
(Lemma 2.7(ii)). By the ‘right’ version of Proposition 2.6(i), X* is 7*-uniform at
c. Therefore, condition (2) also holds. In order to check the validity of (3), take, due
to Lemma 6.1, nbd U € Ny such that fU is an equicontinuous subset of X*. Since
X is (NP), fU is fragmented. On the other hand, the continuity of m guarantees

that f: S — X* is weak *-continuous. Therefore, Lemma 3.2(b) establishes that
U is fragmented by f: S — (X*, pu*). Hence, S is locally fragmented at s by f
Now we can use Lemma 5.5(b) which yields that f is continuous at t. O

The following applications are divided into several subsections.

A. Locally compact (semi) group actions.

Theorem 6.3. Let X be (NP), let S be a topological subsemigroup of a
locally compact topological group G, and let w: S x X — X be a continuous linear
action. Then m*: X* x S — X* is continuous at every (f,t), where f € X* and
t € int(S) -int(S). In particular, if S = G, then ©* is continuous.

Proof. Let f € X* and t = syso, where sq1,s9 € int(S). By Lemma 5.2,
s1 <" t with C5, ; = {s2}. The points sy and ¢, being in int(S), have locally
compact nbd’s in S. Therefore, by Lemma 2.7, 7 is locally equicontinuous (and,
hence, locally bounded) at each ¢ € {s2,t}. Now, we can apply Lemma 6.2 . O

Corollary 6.4. (Moore [30, Ch. 5, Theorem 5], Bourbaki [5, Ch. 8, §2, Ex.
3(c)]) For every locally compact topological group G and every continuous linear
action on a semireflexive space X, the dual action is continuous.

Proof. By Proposition 4.3, X is (NP). O

Corollary 6.5. (Generalized Arendt Theorem.) Let X be (NP). For every
continuous linear one-parameter semigroup action w: [0,00) x X — X, the dual
action 7 : X* x [0,00) = X* is continuous at every (f,t), where f € X* and
t> 0.

Remark 6.6.

(a) Helmer has shown [18, Corollary 4.3], that if S is a locally compact topolog-
ical monoid, then for every continuous linear action of S on a semireflexive
space X, the dual action is continuous at every (f,t), where f € X* and
t is a unit.

(b) Arendt [3] proved Corollary 6.5 for Banach spaces X whose duals have
the Radon-Nikodym Property. By [45], such X are Asplund. Therefore,
Corollary 6.5 is stronger. A “non-adjoint” generalization of Arendt’s result
was obtained by van Neerven [35, Lemma 3.1].

(c) It is actually well known that some restrictions on points ¢t € S are really
needed. For example, if S = [0,00) and X is a (non-reflexive) Asplund
Banach space, then “¢ > 07 is essential even for X = ¢g, or for X = Y™
where YV is the (quasi-reflexive) James space (cf. [36, Examples 2.3.5,
1.5.3]).

(d) Gener)ally, the local boundedness in Lemma 6.2, as well as the local com-
pactness in Theorem 6.3 and Corollary 6.4, cannot be dropped even for a

Baire topological group G and a reflexive £.c.s. X. Indeed, if G = Rﬁ“ is the



Ro-power of the multiplicative group of all positive real numbers, X = RYo
and m: G x X — X is defined coordinatewise, then it is easy to see that

7 is not continuous at any (0,g), where g € G.

Theorem 6.7. Let X be (NP) and let S be a compact left topological monoid
such that the group of all units H(e) is dense in S. For every linear continuous
action m: S x X — X, the dual action @ is continuous at every (f,t), where

fE€X* and t € H(e).
Proof. Apply Lemma 6.2, taking into account Lemmas 2.7(iii) and 5.4. O

B. Actions on normed spaces.

Theorem 6.8. Let X be a normed space whose dual X* has the Radon-Nikodym
property, and let S be an arbitrary topologized semigroup. For every continuous
linear action m: S x X — X, the dual action ©* is continuous at every (f,t),

where f € X* and t € S< (or even t € S<w | if the action is contracting).

Proof. By Proposition 2.6(iv), we may assume that X is Banach. Above-
mentioned characterization from [45] implies that X is Asplund. By Proposition
4.2, X is (NP). By Proposition 2.8, 7 is locally equicontinuous and, hence, locally
bounded by Lemma 2.7(i). Finally, use Lemma 6.2. [

Corollary 6.9. For an arbitrary topological group G and any continuous linear
action of G on an Asplund Banach space, the dual action is also continuous.

Remark 6.10. (a) For G = R, see van Neerven [36, Corollary 6.2.6].

(b) Christensen and Kenderov proved in [7] that every weak *-continuous map-
ping F' from a Baire space S into X*, where X is Banach and X* has the Radon-
Nikodym property, is norm-continuous at any point of a certain dense (Gs subset
of S. This result, together with Propositions 2.8, 2.6, Lemma 2.7 and easy trans-
port arguments, provide an alternative proof of Corollary 6.9 in the case of a Baire
topological group G.

Let Is(X) be the group of all linear isometries of a normed space X. Denote
by p (and p*) the group topology on Is(X) generated by the system of all orbit
mappings

{2: Is(X) > X, (9) =gz |z€ X}
(respectively: {f Is(X) —» X™, f(g) = fg ‘ fe X*})

Theorem 6.8 implies that if X* has the Radon-Nikodym property, then the dual
action of (Is(X),p) on X* is continuous. Therefore, p* C p. This yields:

Corollary 6.11. If X 1is a reflexive Banach space, then the topologies p and
p* on Is(X) coincide.

C. Construction of minimal topological groups.

Recall that a topological group G is said to be minimal [10] if it does not
admit a strictly coarser Hausdorff group topology. If X x G is minimal for every
minimal group X, then G is called perfectly minimal [10]. The following theorem
provides additional information to the results of [29].



Theorem 6.12. Let X be an Asplund Banach space. Then every topological
subgroup of (Is(X),p) is a topological group retract of a perfectly minimal topological
group.

Proof. By Corollary 6.9, the dual action of (Is(X),p) on X* is continuous.
Therefore, G is an HBR-group in the sense of [29, Definitions 4.2, 4.7]. Now our
assertion follows directly from Theorem 4.8 of [29]. O

D. Actions on compact operators.

Let X and Y be Banach spaces. If X* or Y has the approximation property,
then the injective tensor product X*®;Y is naturally isomorphic to K(X,Y) [24
p. 268].

Theorem 6.13. Let X and Y be Banach spaces. Suppose that X is Asplund
and that either X* or Y has the approximation pmperty Then for every continu-
ous linear action 7w: S x X — X, the induced action 7*: L(X,Y) x § — L(X,Y)
is continuous at every (f,t), where f is a compact operator and t € S . In par-
ticular, the induced action 7% : K(X,Y) x G — K(X,Y) is jointly continuous for
arbitrary topological group S = G.

Proof. By Proposition 2.8, 7 is locally equicontinuous. Then the same is true
for the right action 7%. Since “equicontinuous” implies * uniformly equicontinuous”
in linear spaces, Example 2.3(a) shows that L(X,Y) is ¥ -uniform. Fix (f,t) €
K(X,Y) x S9. By Lemma 2.4(iii), it suffices to show that f: 8 = L(X,Y)
is continuous at t. Since f is compact, f(S) C K(X,Y). Therefore, we may
assume that f has the form S — K(X,Y). By the above-mentioned fact, we have
K(X,Y) = X*®;Y. Moreover, the action of S on K(X,Y) naturally coincides
with the action 7*®;my, where my is the trivial action of the one-point monoid. By
Proposition 4.2 and Lemma 6.2, 7* is continuous at (f,t). Now, Proposition 2.9
completes the proof. O

The compactness of fy is essential. For an appropriate counterexample, take
fo = 1x and a non-uniform continuous semigroup representation.

E. “Small” orbits.

Theorem 6.14. Let m: S x X — X be a continuous linear action of a Baire
topologized semigroup on a normed space X , let' Y be an £ .t.s., and let fo: X — Y
be a continuous linear operator. Suppose that for every s € S there exists U € N
such that foU s um'formly Lindelif (e.g., precompact, separable, Lindeldf, ccc).

Then the action n": L(X,Y) x S — L(X,Y) is continuous at (fo,t) for every
tesv,

Proof.  Asin the proof of Theorem 6.13, it suffices to show that fo: S = L(X,Y)
is continuous at every t € S<". This can be done by combining Proposition 3.10(i)

and Lemma 5.5(b). O

We list here some known results which can easily be obtained by adapting
6.14.
(a) [35, Theorem 3.4] Let 7: [0,00) x X — X be a continuous linear action of
[0,00) on a Banach space X, and let fo € X*. Then fy: [0,00) = X* is
continuous at every ¢ > 0 iff the orbit of fy is (weakly) separable.



(b) (See [46, 11], [25] (for second countable G)) Let G be a locally compact
group. If the G-orbit of a measure m € M(G) = (Co(G))* is separable,
then the orbit map m is continuous (and, hence, m is absolutely continu-
ous).

(c) [39] If G is a locally compact group and fo € L*=(G) = (L'(G))* has a

separable orbit, then the orbit map fy is continuous.

Recall that a Banach space X is said to have the point of continuity property
(abbr.: (PC)) if each bounded closed set C' admits a point of continuity of the
identity map (C,weak) — (C,norm). This property can be characterized in terms
of fragmentability. By [13, 3.13] X has the property (PC) iff each weakly closed
bounded subset of X is huskable (in our terminology: locally fragmented). Another
way to say this is: every bounded subset of X is fragmented [21, p. 665]. Banach
spaces with the Radon-Nikodym property or with (weakly) Cech-complete ball have
the property (PC) [13, 3.14].

Sometimes the weak continuity of an orbit mapping implies its continuity.
Several results of this kind can be found in [12, 18, 26, 30].

Theorem 6.15.  Let m: Sx X — X be a linear action on an £.c.s. (X,T) such
that m is continuous at (p,0) for every p € S. Suppose that s <tt, 29 € X and
Zo: S — X is weakly continuous. Then xy is T-continuous at t under each of the
following conditions:

(i) X is a Banach space with the property (PC);

(ii) There exists a separable Baire nbd U of s.

If the action is equicontinuous, then in both cases we may assume that s <% t.

Proof. Proposition 2.6(i) shows that X is m-uniform.

(i) By proposition 2.8, Uzq is norm-bounded for a certain nbd U of s. Above-
mentioned characterization of (PC) implies that Uz is fragmented. Then by
Lemma 3.2(b) the map g is locally fragmented at s. For the rest use Lemma
5.5(a).

(i) Since &g is weakly continuous, Uz is weakly separable, and, hence, even
T-subseparable (a subset of a separable set) because 7 is locally convex. Therefore,
Uz is uniformly Lindel6f. By Lemma 3.4(b) and Proposition 3.10(i), S is locally
fragmented by Zo at s. Now Lemma 5.5(a) completes the proof.

If the action is equicontinuous then use Lemma 5.5(c). O

Corollary 6.16. Let S be a Baire locally separable semitopological group. Then
RUC(S) = WRUC(S) (for definitions see, for example, [12]).

F. Actions on quasi-Montel spaces.

Theorem 6.17. Let X be a quasi-Montel space, P a topological space and
m: P x X — X a continuous right linear function.
(i) For every normed space Y , the induced map nt: L(X,Y) x P — L(X,Y)
18 separately continuous.
(ii) If P is locally compact, then ml is jointly continuous for every £.t.s. Y.

Proof. (i) For each fy € L(X,Y), use Lemma 6.1(i) (with F = {fp}) and
Proposition 4.4.
(i) Instead of Lemma 6.1(i), use Lemmas 6.1(ii), 2.7 and 2.4(iii). a



G. Sublinear functionals defined over orbits.

Theorem 6.18. Let m: SxX — X be a continuous linear action of a topologized
semigroup S on a normed space X. Suppose that fo € X*, sg € S, U € Ng,, and
for every non-empty relatively w* -closed subset A of foU, the sublinear functional
o4, defined by the rule o4(x) = sup {fo(sz) ‘ fos € A}, has a point of Fréchet
differentiability. Then ©* is continuous at (fo,t) for every t satisfying so <" t.

Proof. Let so <" t. Our aim is to show that all conditions of Lemma 5.5(b)

are satisfied. First, choose, by Lemma 6.1, nbd V of sq such that V' C U and
foV is equicontinuous (equivalently, bounded). Proposition 3.14 states that foV'

is fragmented. By Lemma 3.2(b) and the weak *-continuity of fy, we obtain that

V is fragmented by fy. In particular, S is locally fragmented at so by fy. By
Proposition 2.8 and Lemma 2.7(ii), X* is n*-uniform. Therefore, we can use
Lemma 5.5(b), which completes the proof. O
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